- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- 《深入浅出多模态》(九)多模态经典模型:MiniGPT-v2、MiniGPT5
GoAI
深入浅出多模态深入浅出AI多模态vllmLLM大模型stablediffusion
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL、SQL-PaLM)、新一代数据集BIRD-SQL解读
汀、人工智能
LLM工业级落地实践copilot人工智能NL2SQLLLM自然语言处理NL2DSLText2SQL
NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL)、新一代数据集BIRD-SQL解读NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQ
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【论文解读】Macroblock Level Rate Control for Low Delay H.264/AVC based Video Communication
Codec Conductor
论文解读#x264h.264x264音视频码率控制视频编解码AVC
级别:IEEE时间:2015作者:MinGao等机构:哈尔滨工业大学下载:MacroblockLevelRateControlforLowDelayH.264/AVCbasedVideoCommunication摘要算法目的:提出了一种针对低延迟H.264/AVC视频通信的宏块(MB)级别速率控制算法。算法基础:基于ρ域速率模型,该模型涉及量化后零变换系数的百分比(ρ)。关键技术:使用指数模型来描
- 论文解读:从Dijkstra的On-the-Fly到Go的三色标记算法,并行垃圾回收的起源
liuwill
计算机科学算法后端论文阅读
我们经常听到关于垃圾回收的说法是,某种垃圾回收算法是一种特定语言特有的,容易理解成,垃圾回收的算法跟特定编程语言是绑定的,但是仔细想想,垃圾回收器是一种分配和管理内存的机制或者程序,内存管理跟语言本身是没有必然联系的,只是语言运行时实现时的一种策略选择。更严格来说的,其实不仅仅是垃圾回收策略,一些语言的语法特性,也不是某种语言专属,语言的实现者完全可以通过组合,自己选择自己偏好的策略,发明更多的语
- 机器人建图算法2.1从栅格占据地图到ESDF地图
RuiH.AI
机器人建图算法学习算法
机器人建图算法2.1从栅格占据地图到ESDF地图前言论文解读示意图说明伪代码说明算法流程总结前言最基础的地图是占据栅格地图Occupancymap,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。IROS2010:ImprovedupdatingofEuclideandistancemapsan
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 这个论文解读 agent 比GPT-4 还要牛!强烈推荐!
夕小瑶
人工智能自然语言处理transformerchatgpt深度学习神经网络
已经2024年了,该出现一个论文解读AIAgent了。但是目前市面上哪怕最强的GPT-4来做论文解读也是不行,所以我们顺手做了这样一个agent,因为——我们公司的算法同学也需要刷论文啊喂=,=而且我们也经常人工写论文解读嘛,所以干脆就顺手做一个得了,不求赚钱,但求有点用。真正尝试过用gpt去刷论文、写论文解读的小伙伴,一定深有体验——费劲。其他agents也没有能搞定的,所以我们就索性做了个,传
- 「 2023-年度总结 」2023关于三掌柜的每个值得记录的时刻
目录前言顺利转正被任命为项目经理印象深刻的实战经历:项目重大版本上线系统学习新技术的心得体会获得腾讯云开发者社区优秀作者奖想要安利给所有人的开发工具技术大会招募线下沙龙圆桌主持新书发布上市受邀直播探会接受采访组织1024程序员节活动获得1024超级个体受邀参加特训营分享NPCon大会主持人成为开源讲师参加鸿蒙生态学堂·创新实训营北京站的培训番外篇番外的番外篇我的最大收获与成长2024新年Flag彩
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- FaE:基于符号知识的适应性和可解释的神经记忆
NLP论文解读
©原创作者|朱林论文解读:FactsasExperts:AdaptableandInterpretableNeuralMemoryoverSymbolicKnowledge论文作者:GoogleResearch论文地址:https://arxiv.org/abs/2007.00849收录会议:NAACL202101介绍大规模语言模型,如BERT、Transformer等是现代自然语言建模的核心,其
- 论文解读:知识图谱融入预训练模型
NLP论文解读
深度学习机器学习人工智能自然语言处理知识图谱
©NLP论文解读原创•作者|疯狂的Max背景及动机以BERT为基础的预训练模型在各项NLP任务获得巨大的成功,与此同时,如何在泛化的预训练模型基础上融入某些特定领域的知识图谱以获得在特定领域内让模型有更优秀的表现,这一课题也一直备受关注。然而大部分之前的将知识图谱融入预训练模型的工作都是将知识图谱的知识转化为知识导向的训练任务,通过更新整个模型的参数来进行训练,来实现知识图谱的融入。这种方法虽然可
- 知识增广的预训练语言模型K-BERT:将知识图谱作为训练语料
NLP论文解读
知识图谱语言模型bert
©原创作者|杨健论文标题:K-BERT:EnablingLanguageRepresentationwithKnowledgeGraph收录会议:AAAI论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5681项目地址:https://github.com/autoliuweijie/K-BERT01背景论述笔者在前面的论文解读中提到过E
- HybridA* 论文解读
Big David
自动驾驶规划系列论文阅读笔记HybridA*论文阅读混合Astar
本文旨在对原论文进行翻译,对混合A*有一个大概的理解论文题目:PracticalSearchTechniquesinPathPlanningforAutonomousDriving1摘要本文描述了一个实用的路径规划算法,无人驾驶汽车在未知的环境中,障碍物通过机器人的传感器实时检测产生平滑的路径。这项工作的动机和实验验证了在2007年DARPA城市挑战赛,机器人必须在停车场自主导航。本文的方法有两个
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 论文解读《Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images》 小样本6D位姿估计
ZYLer_
6D位姿估计机器学习人工智能计算机视觉3d深度学习
论文:《Gen6D:GeneralizableModel-Free6-DoFObjectPoseEstimationfromRGBImages》Code:https://github.com/liuyuan-pal/gen6d(469star)摘要:现有的可推广姿态估计器要么需要高质量的对象模型,要么在测试时需要额外的深度图或对象掩码,这大大限制了其应用范围。为了满足实际应用中的需求,我们认为姿态
- 论文解读《EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose 》
ZYLer_
6D位姿估计计算机视觉人工智能3d
论文:《EPro-PnP:GeneralizedEnd-to-EndProbabilisticPerspective-n-PointsforMonocularObjectPoseEstimation》Code:https://github.com/tjiiv-cprg/epro-pnp(909star)作者的视频简单介绍:https://www.bilibili.com/video/BV13T41
- VLM 系列——Llava1.6——论文解读
TigerZ*
AIGC算法人工智能AIGC深度学习计算机视觉
一、概述1、是什么Llava1.6是llava1.5的升级暂时还没有论文等,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答、根据图片写代码(HTML、JS、CSS),潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述)。支持单幅图片输入(可以作为第一个或第二个输入),多轮文本对话。本文基于CLIP的视觉编码器,以及多个版本语言解码器,使用最简单的两层FC构成MLP映射视觉特
- VLM (MLLM)系列——论文解读总结
TigerZ*
AIGC算法深度学习人工智能计算机视觉AIGC图像处理算法
建议以下几篇都看一下吧,因为这几篇相对出发点都有新意,并且也都在同期的思南评测中有排名。CLIP*数据:用了4亿的互联网自有图文对数据。*模型:由一个视觉编码器、一个文本编码器*训练:一阶段预训练,在32768的batchsize下做的对比学习。中文CLIP*数据:由LAION5B等构成一个2亿的图文对数据。*模型:整体和CLIP类似,由一个视觉编码器、一个文本编码器。*训练:两阶段预训练,权重来
- VLM 系列——MoE-LLaVa——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGC计算机视觉transformer
一、概述1、是什么moe-Llava是Llava1.5的改进全称《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个
- VLM 系列——LLaVA-MoLE——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGCtransformer计算机视觉
一、概述1、是什么Llava-MoLE是Llava1.5的改进全称《LLaVA-MoLE:SparseMixtureofLoRAExpertsforMitigatingDataConflictsinInstructionFinetuningMLLMs》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 知识增强的预训练模型简介
NLP论文解读
©NLP论文解读原创•作者|杨健专栏系列概览该专栏主要介绍自然语言处理领域目前比较前沿的领域—知识增强的预训练语言模型。通过解读该主题具备代表性的论文以及对应的代码,为大家揭示当前最新的发展状况。为了能够和大家更好的分享自己的收获,笔者将遵循下面几个原则。1、理论讲解尽量深入浅出,通过举例子或者大白话讲解论文,而非仅针对原文翻译。2、针对论文中一些重要的术语,适时的做出解释。3、理论和实践相结合,
- AAAI 2020「自然语言处理(NLP)论文解读」文本简化要素分析
Shu灬下雨天
来源:AINLPer微信公众号编辑:ShuYini校稿:ShuYini时间:2020-2-17TILE:DiscourseLevelFactorsforSentenceDeletioninTextSimplification.Contributor:俄亥俄州立大学Paper:https://arxiv.org/abs/1911.10384v1Code:None文章摘要 文本简化需要对相关的句子
- 论文笔记-Generative Adversarial Nets
升不上三段的大鱼
论文链接:https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf论文解读:https://www.bilibili.com/video/BV1rb4y187vD?share_source=copy_web一句话总结:提出了生成模型框架GAN,包括一个生成模型G和一个判别模型D,用有监督的损失
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- EMNLP 2023精选:Text-to-SQL任务的前沿进展(下篇)——Findings论文解读
Q同学的nlp笔记
sql人工智能nlp自然语言处理深度学习语言模型论文阅读
导语本文记录了今年的自然语言处理国际顶级会议EMNLP2023中接收的所有与Text-to-SQL相关(通过搜索标题关键词查找得到,可能不全)的论文,共计12篇,包含5篇正会论文和7篇Findings论文,以下是对这些论文的略读,某几篇也有详细的笔记(见链接)。由于篇数过多,分为两篇博客记录,本篇为第二篇,主要记录Findings论文:序号类型标题1MainBenchmarkingandImpro
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb