我们通常把模型的各个组成成分分成6种类型:
接下来我们以 HardVFE 为例展示如何开发新的组成模块。
创建一个新文件 mmdet3d/models/voxel_encoders/voxel_encoder.py
:
import torch.nn as nn
from ..builder import VOXEL_ENCODERS
@VOXEL_ENCODERS.register_module()
class HardVFE(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
用户可以通过添加下面这行代码到 mmdet3d/models/voxel_encoders/__init__.py
中
from .voxel_encoder import HardVFE
或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。
custom_imports = dict(
imports=['mmdet3d.models.voxel_encoders.HardVFE'],
allow_failed_imports=False)
model = dict(
...
voxel_encoder=dict(
type='HardVFE',
arg1=xxx,
arg2=xxx),
...
接下来我们以 SECOND(Sparsely Embedded Convolutional Detection) 为例展示如何开发新的组成模块。
创建一个新文件 mmdet3d/models/backbones/second.py
:
import torch.nn as nn
from ..builder import BACKBONES
@BACKBONES.register_module()
class SECOND(BaseModule):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
用户可以通过添加下面这行代码到 mmdet3d/models/backbones/__init__.py
中
from .second import SECOND
或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。
custom_imports = dict(
imports=['mmdet3d.models.backbones.second'],
allow_failed_imports=False)
model = dict(
...
backbone=dict(
type='SECOND',
arg1=xxx,
arg2=xxx),
...
创建一个新文件 mmdet3d/models/necks/second_fpn.py
:
from ..builder import NECKS
@NECKS.register
class SECONDFPN(BaseModule):
def __init__(self,
in_channels=[128, 128, 256],
out_channels=[256, 256, 256],
upsample_strides=[1, 2, 4],
norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
upsample_cfg=dict(type='deconv', bias=False),
conv_cfg=dict(type='Conv2d', bias=False),
use_conv_for_no_stride=False,
init_cfg=None):
pass
def forward(self, X):
# implementation is ignored
pass
用户可以通过添加下面这行代码到 mmdet3D/models/necks/__init__.py
中
from .second_fpn import SECONDFPN
或者添加以下的代码到配置文件中,从而能够在避免修改源码的情况下导入新建模块。
custom_imports = dict(
imports=['mmdet3d.models.necks.second_fpn'],
allow_failed_imports=False)
model = dict(
...
neck=dict(
type='SECONDFPN',
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),
...
接下来我们以 PartA2 Head 为例展示如何开发新的组成模块。
注意:此处展示的 PartA2 RoI Head 将应用于双阶段检测器中,对于单阶段检测器,请参考 mmdet3d/models/dense_heads/
中所展示的例子。由于这些 heads 简单高效,因此这些 heads 普遍应用在自动驾驶场景下的 3D 检测任务中。
首先,在 mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py
中创建一个新的 bbox head。
PartA2 RoI Head 实现一个新的 bbox head ,并用于目标检测的任务中。
为了实现一个新的 bbox head,通常需要在其中实现三个功能,如下所示,有时该模块还需要实现其他相关的功能,如 loss
和 get_targets
。
from mmdet.models.builder import HEADS
from .bbox_head import BBoxHead
@HEADS.register_module()
class PartA2BboxHead(BaseModule):
"""PartA2 RoI head."""
def __init__(self,
num_classes,
seg_in_channels,
part_in_channels,
seg_conv_channels=None,
part_conv_channels=None,
merge_conv_channels=None,
down_conv_channels=None,
shared_fc_channels=None,
cls_channels=None,
reg_channels=None,
dropout_ratio=0.1,
roi_feat_size=14,
with_corner_loss=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
loss_bbox=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='none',
loss_weight=1.0),
init_cfg=None):
super(PartA2BboxHead, self).__init__(init_cfg=init_cfg)
def forward(self, seg_feats, part_feats):
其次,如果有必要的话,用户还需要实现一个新的 RoI Head,此处我们从 Base3DRoIHead
中继承得到一个新类 PartAggregationROIHead
,此时我们就能发现 Base3DRoIHead
已经实现了下面的功能:
from abc import ABCMeta, abstractmethod
from torch import nn as nn
@HEADS.register_module()
class Base3DRoIHead(BaseModule, metaclass=ABCMeta):
"""Base class for 3d RoIHeads."""
def __init__(self,
bbox_head=None,
mask_roi_extractor=None,
mask_head=None,
train_cfg=None,
test_cfg=None,
init_cfg=None):
@property
def with_bbox(self):
@property
def with_mask(self):
@abstractmethod
def init_weights(self, pretrained):
@abstractmethod
def init_bbox_head(self):
@abstractmethod
def init_mask_head(self):
@abstractmethod
def init_assigner_sampler(self):
@abstractmethod
def forward_train(self,
x,
img_metas,
proposal_list,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
**kwargs):
def simple_test(self,
x,
proposal_list,
img_metas,
proposals=None,
rescale=False,
**kwargs):
"""Test without augmentation."""
pass
def aug_test(self, x, proposal_list, img_metas, rescale=False, **kwargs):
"""Test with augmentations.
If rescale is False, then returned bboxes and masks will fit the scale
of imgs[0].
"""
pass
接着将会对 bbox_forward 的逻辑进行修改,同时,bbox_forward 还会继承来自 Base3DRoIHead
的其他逻辑,在 mmdet3d/models/roi_heads/part_aggregation_roi_head.py
中,我们实现了新的 RoI Head,如下所示:
from torch.nn import functional as F
from mmdet3d.core import AssignResult
from mmdet3d.core.bbox import bbox3d2result, bbox3d2roi
from mmdet.core import build_assigner, build_sampler
from mmdet.models import HEADS
from ..builder import build_head, build_roi_extractor
from .base_3droi_head import Base3DRoIHead
@HEADS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
"""Part aggregation roi head for PartA2.
Args:
semantic_head (ConfigDict): Config of semantic head.
num_classes (int): The number of classes.
seg_roi_extractor (ConfigDict): Config of seg_roi_extractor.
part_roi_extractor (ConfigDict): Config of part_roi_extractor.
bbox_head (ConfigDict): Config of bbox_head.
train_cfg (ConfigDict): Training config.
test_cfg (ConfigDict): Testing config.
"""
def __init__(self,
semantic_head,
num_classes=3,
seg_roi_extractor=None,
part_roi_extractor=None,
bbox_head=None,
train_cfg=None,
test_cfg=None,
init_cfg=None):
super(PartAggregationROIHead, self).__init__(
bbox_head=bbox_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
self.num_classes = num_classes
assert semantic_head is not None
self.semantic_head = build_head(semantic_head)
if seg_roi_extractor is not None:
self.seg_roi_extractor = build_roi_extractor(seg_roi_extractor)
if part_roi_extractor is not None:
self.part_roi_extractor = build_roi_extractor(part_roi_extractor)
self.init_assigner_sampler()
def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois):
"""Forward function of roi_extractor and bbox_head used in both
training and testing.
Args:
seg_feats (torch.Tensor): Point-wise semantic features.
part_feats (torch.Tensor): Point-wise part prediction features.
voxels_dict (dict): Contains information of voxels.
rois (Tensor): Roi boxes.
Returns:
dict: Contains predictions of bbox_head and
features of roi_extractor.
"""
pooled_seg_feats = self.seg_roi_extractor(seg_feats,
voxels_dict['voxel_centers'],
voxels_dict['coors'][..., 0],
rois)
pooled_part_feats = self.part_roi_extractor(
part_feats, voxels_dict['voxel_centers'],
voxels_dict['coors'][..., 0], rois)
cls_score, bbox_pred = self.bbox_head(pooled_seg_feats,
pooled_part_feats)
bbox_results = dict(
cls_score=cls_score,
bbox_pred=bbox_pred,
pooled_seg_feats=pooled_seg_feats,
pooled_part_feats=pooled_part_feats)
return bbox_results
此处我们省略了与其他功能相关的细节,请参考 此处 获取更多细节。
最后,用户需要在 mmdet3d/models/bbox_heads/__init__.py
和 mmdet3d/models/roi_heads/__init__.py
中添加新模块,使得对应的注册器能够发现并加载该模块。
此外,用户也可以添加以下的代码到配置文件中,从而实现相同的目标。
custom_imports=dict(
imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_heads.bbox_heads.parta2_bbox_head'])
PartAggregationROIHead 的配置文件如下所示:
model = dict(
...
roi_head=dict(
type='PartAggregationROIHead',
num_classes=3,
semantic_head=dict(
type='PointwiseSemanticHead',
in_channels=16,
extra_width=0.2,
seg_score_thr=0.3,
num_classes=3,
loss_seg=dict(
type='FocalLoss',
use_sigmoid=True,
reduction='sum',
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_part=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
seg_roi_extractor=dict(
type='Single3DRoIAwareExtractor',
roi_layer=dict(
type='RoIAwarePool3d',
out_size=14,
max_pts_per_voxel=128,
mode='max')),
part_roi_extractor=dict(
type='Single3DRoIAwareExtractor',
roi_layer=dict(
type='RoIAwarePool3d',
out_size=14,
max_pts_per_voxel=128,
mode='avg')),
bbox_head=dict(
type='PartA2BboxHead',
num_classes=3,
seg_in_channels=16,
part_in_channels=4,
seg_conv_channels=[64, 64],
part_conv_channels=[64, 64],
merge_conv_channels=[128, 128],
down_conv_channels=[128, 256],
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
shared_fc_channels=[256, 512, 512, 512],
cls_channels=[256, 256],
reg_channels=[256, 256],
dropout_ratio=0.1,
roi_feat_size=14,
with_corner_loss=True,
loss_bbox=dict(
type='SmoothL1Loss',
beta=1.0 / 9.0,
reduction='sum',
loss_weight=1.0),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0)))
...
)
MMDetection 2.0 支持配置文件之间的继承,使得用户能够更加关注自己的配置文件的修改。
PartA2 Head 的第二阶段主要使用新建的 PartAggregationROIHead
和 PartA2BboxHead
,需要根据对应模块的 __init__
参数来设置对应的参数。
假定用户想要新添一个用于检测框回归的 loss,并命名为 MyLoss
。
为了添加一个新的 loss ,用于需要在 mmdet3d/models/losses/my_loss.py
中实现对应的逻辑。
装饰器 weighted_loss
能够保证对 batch 中每个样本的 loss 进行加权平均。
import torch
import torch.nn as nn
from ..builder import LOSSES
from .utils import weighted_loss
@weighted_loss
def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox
接着,用户需要将 loss 添加到 mmdet3d/models/losses/__init__.py
:
from .my_loss import MyLoss, my_loss
此外,用户也可以添加以下的代码到配置文件中,从而实现相同的目标。
custom_imports=dict(
imports=['mmdet3d.models.losses.my_loss'])
为了使用该 loss,需要对 loss_xxx
域进行修改。
因为 MyLoss 主要用于检测框的回归,因此需要在对应的 head 中修改 loss_bbox
域的值。
loss_bbox=dict(type='MyLoss', loss_weight=1.0))