- 23、深度学习-自学之路-激活函数relu、tanh、sigmoid、softmax函数的正向传播和反向梯度。
小宇爱
深度学习-自学之路深度学习人工智能
在使用这个非线性激活函数的时候,其实我们重点还是学习的是他们的正向怎么传播,以及反向怎么传递的。如下图所示:第一:relu函数的正向传播函数是:当输入值(隐藏层)值大于了,就输出自己本身的值。反向梯度传播:当输出值大于0,那么反向梯度值就等于输出值乘以1如果小于0,那反向梯度值就等于0.通俗的来说就是,如果输入值是0或小于0,那么输出值的反向增强就没有。如果输入值大于0,那么输出值的方向增强就有。
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- DeepSeek预言未来5年升值最快的东西
ZhuBin365
其它人工智能机器人
Thinking好的,我现在需要思考未来5年哪些东西可能会升值最快。首先,我得考虑当前的经济趋势和技术发展的方向。通货膨胀可能继续,所以实物资产可能保值。然后是科技领域,比如人工智能、量子计算这些前沿技术相关的资产可能会有增长。接着,环保和可持续发展是热门话题,可再生能源相关的产业可能会增值。例如,太阳能、风能的公司股票或者相关技术专利。另外,电动汽车和电池技术也可能持续发展,锂、钴等稀有金属的需
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 销售易、极兔、珍客CRM:产品功能特色与企业适用性分析
程序员机器学习人工智能
销售易CRM产品功能移动化与社交化:销售易CRM支持iOS、Android等主流操作系统,销售人员可以随时随地访问客户信息、更新销售进度、创建任务等。同时,它还具备社交化功能,能够整合企业内部的社交网络,促进员工之间的协作与沟通。AI与大数据驱动:销售易CRM融合了人工智能和大数据技术,通过智能数据分析,帮助企业洞察客户行为和需求,预测销售趋势。例如,AI可以对客户数据进行深度挖掘,识别出高价值客
- 前瞻技术:塑造未来生活的新趋势
火龙果wa
生活人工智能经验分享
人工智能在艺术创作中的应用越来越普遍。AI可以生成画作、音乐和文学作品。它通过分析大量数据,学习艺术风格,并能创造出独特的作品。AI创作的艺术作品有几个特点。首先,它可以快速完成创作,节省时间。第二,AI能够融合多种风格。这使得作品更加多样化,有了新的表现形式。此外,AI常常会产生一些意想不到的创意,这能激发人们的灵感。艺术家与AI的合作也在逐渐发展。很多艺术家开始尝试与AI共同创作。他们使用AI
- 4.Python教程--项目部署篇(全)
花开如雨
笔记
Python人工智能总目录人工智能总目录网页链接文章目录Python人工智能总目录13、Python运维Day0113.1运维1.运维概述2.运维工具3.Linux常用命令4.周期性计划任务5.awk的使用14、Python项目部署Day0114.1项目部署1.概念2.项目部署(nginx+uwsgi+django)3.部署在线商城项目13、Python运维Day0113.1运维1.运维概述1、运
- DeepSeek深度探索:从新手到高手的蜕变之旅
古龙飞扬
ai人工智能
引言在当今数字化与智能化的浪潮中,人工智能(AI)技术正以前所未有的速度改变着我们的生活和工作方式。DeepSeek,作为一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能模型,凭借其强大的功能和灵活的应用场景,成为了众多企业和专业人士的得力助手。本文将带你深入了解DeepSeek,从新手入门到高手进阶,掌握其核心功能与使用技巧,实现个人能力的蜕变。一、初识DeepSeek:人工智能的“
- 联想Y7000 2024版本笔记本 RTX4060安装ubuntu22.04双系统及深度学习环境配置
七七@你一起学习
深度学习python
目录1..制作启动盘2.Windows磁盘分区,删除原来ubuntu的启动项3.四个设置4.安装ubuntu5.ubuntu系统配置1..制作启动盘先下载镜像文件,注意版本对应。Rufus-轻松创建USB启动盘用rufus制作时,需要注意选择正确的分区类型和系统类型。不然安装的系统会有问题!2.Windows磁盘分区,删除原来ubuntu的启动项手把手教你调整电脑磁盘的分区大小_调整分区大小-CS
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- AI前端开发的国际化发展机遇:ScriptEcho助力全球化布局
2401_89747417
人工智能前端
在全球化的今天,互联网应用已不再局限于单一市场。高效便捷的前端开发方案成为企业拓展国际市场的关键。得益于人工智能技术的飞速发展,AI代码生成器正在深刻改变前端开发模式,为国际化应用开发带来前所未有的机遇。然而,国际化开发也面临着诸多挑战,例如不同地区用户习惯、技术标准、语言差异等等。本文将探讨AI前端开发在国际化市场中的机遇与挑战,并以ScriptEcho为例,分析AI工具如何助力企业实现高效的全
- 【鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪】
萌虎不虎
OpenHarmonyharmonyosopencv华为
鸿蒙在OpenHarmony系统上集成OpenCV,实现图片裁剪OpenCV介绍OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV具有极广的应用领域,它包括但不限于:人脸识别和物
- 中国人工智能的起步/发展,与这位数学家密切相关
东锋1.3
人工智能人工智能
1979年在中国是一个重要的年份。这一年发生了诸多大事,也被视为中国在政治、经济、科技、文化等多个领域的一个重要转折点和中国近现代历史重要的时期断代点之一。相比1979年所开启的波澜壮阔的新时代,中国人工智能(ArtificialIntelligence,AI)研究在1979年的起步只能算历史大潮中的一朵不起眼的浪花,但在中国人工智能的历史里,这是开天辟地的大事件。人工智能最早的学派是符号主义学派
- 今日AI和商界事件(2025-02-07)
LS_learner
AI和商界事件人工智能
今日AI领域的相关事件包括但不限于以下几个方面:一、政策与监管美国众议员推动禁止政府设备使用中国AI应用DeepSeek:美国众议院两名来自两党的议员提议立法,禁止联邦政府设备使用中国人工智能应用DeepSeek,理由是中国政府可能利用该应用进行监视和散布虚假信息。这一事件反映了地缘政治紧张背景下,各国在关键技术领域对自主性和安全性的重视。二、行业动态与发展OpenAI推进“星际之门”项目:Ope
- 精通LangChain:如何使用Unstructured处理多种格式的图像文档
hshahtjtbh
langchainpython
#引言随着人工智能和深度学习的快速发展,文档图像分析(DocumentImageAnalysis,DIA)在许多领域中变得至关重要。然而,处理多种图像格式的文档仍然是一个挑战。本文将介绍如何使用Unstructured库,通过LangChain框架加载和处理多种格式的图像文档,帮助您在DIA任务中实现更高效的工作流程。#主要内容##安装Unstructured在开始之前,确保安装了Unstruct
- 《深入了解Unstructured包:在LangChain中使用Unstructured.IO提取干净文本》
cgsayuclv
langchainpython
引言在现代数据处理和人工智能应用中,解析和清洗文本数据是一个重要的环节。无论是PDF文件、Word文档还是CSV文件,能够高效地提取有用信息对下游任务至关重要。这篇文章将介绍如何使用Unstructured.IO的Unstructured包来从原始文档中提取干净文本,并在LangChain框架中使用它。本文将包含安装与设置指南、详细教程、代码示例、常见问题及解决方案,并提供进一步学习的资源。主要内
- 计算机视觉 工业相机、镜头、接口、光源概览及选型参考
坐望云起
深度学习从入门到精通计算机视觉数码相机人工智能镜头接口数据接口镜头
一、相机1、分类按芯片类型分类:CCD相机、CMOS相机按传感器的结构特性分类:线阵相机、面阵相机按输出信号方式分类:模拟相机、数码相机按输出色彩方式分类:黑白相机、彩色相机2、重要参数芯片尺寸芯片尺寸表示图像传感器感光区域的面积大小,直接决定了整个系统的物理放大率。相机的芯片尺寸如图所示。分辨率分辨率表示每英寸包含的像素数。对于图像来说,分辨率是非常重要的,决定了图像是否能够清晰地呈现:相机的分
- DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构
姜葵烽
DeepSeek-V2模型版本更新:探索高效经济的多专家混合架构DeepSeek-V2项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/DeepSeek-V2在人工智能模型的发展进程中,每一次版本更新都是对前一次成果的深化与完善。今天,我们将详细介绍DeepSeek-V2模型的新版本特性,以及它如何通过创新的架构设计,实现了在性能和成本之间的最佳平衡。新
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- 【人工智能】基于Python和OpenCV实现实时人脸识别系统:从基础到应用
蒙娜丽宁
Python杂谈人工智能python开发语言
随着人工智能和计算机视觉的快速发展,人脸识别技术已广泛应用于监控、安全、社交媒体、金融和医疗等领域。本文将介绍如何利用Python和OpenCV库,结合dlib进行实时人脸识别的实现。通过构建一个基础的实时人脸识别系统,读者将深入了解人脸检测与识别的核心原理,掌握如何使用现有的计算机视觉工具快速开发一个有效的实时系统。本文将详细介绍如何通过OpenCV和dlib来实现人脸检测与识别,如何实时获取摄
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 【AI】人工智能没那么神秘!
仇辉攻防
人工智能ai语言模型自然语言处理机器学习深度学习网络安全
AI是什么?人工智能(ArtificialIntelligence),英文缩写为AI。AI人工智能不是简单的应用程序,而是一类技术,包含机器学习、自然语言处理、计算机视觉等多个领域。AI系统通常由算法、数据、模型和代码组成,其中代码用于实现算法,数据用于训练模型,最终形成智能决策能力。AI可以嵌入到应用程序中,但其本身是一个复杂的技术体系。AI为什么这么聪明?AI之所以看起来很聪明,主要是因为它通
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 大语言模型的分类及本地部署所需的硬件配置要求
Kelaru
LLM基础知识语言模型分类人工智能
1、大语言模型概念及作用大语言模型:(LargeLanguageModel,LLM)是一种基于深度学习的人工智能模型,它能够理解和生成自然语言[1]。简单来说,它就像一个“超级大脑”,能够处理各种语言任务,比如写文章、回答问题、翻译语言等;它通过训练大量的文本数据,学习语言的结构、语法、语义以及上下文关联,从而能够理解和生成与人类语言相似的文本。举个例子:如果你问它一个问题,比如:“为什么天空是蓝
- 超级人类模型:机遇与挑战并存
XianxinMao
人工智能算法机器学习
标题:超级人类模型:机遇与挑战并存文章信息摘要:超级人类模型的对齐问题是人工智能领域最紧迫的挑战之一,既可能带来医疗、科学和经济等领域的巨大进步,也可能因认知鸿沟、失控风险和不可逆性导致灾难性后果。尽管OpenAI提出的“弱到强泛化”方法在某些任务上取得了一定成功,但其效果仍有限,且存在能力损失和任务依赖性等挑战。解决对齐问题需要提前研究、跨学科合作和国际协调,以确保超级人类模型的发展始终与人类价
- 硅基流动多模型工作流应用平台,免费2000万Token来了
yuntianming3906
经验分享
硅基流动是一家专注于大规模AI计算的技术公司,提供高性能LLM推理和训练解决方案,助力企业高效部署AI应用。目前注册可获的2000万Token,可以使用将近60种文字对话、语音、图像生成等主流大模型。注册地址:https://cloud.siliconflow.cn/i/kQTQzfuz一、这个平台是做什么的?硅基流动是一家专注于大规模AI计算的技术公司,由清华大学高性能计算研究所孙广宇教授团队创
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement