目录
0、项目介绍
1、效果展示
2、项目搭建
3、项目代码讲解与介绍
Basics.py
PoseModule.py
Example.py
人体姿态图编辑
4、项目资源
5、项目总结
mediapipe中有人体姿态检测的功能,今天我们就将实现最最基础的人体姿态估计项目,它的应用还是有很多的,比如:AI锻炼检测标准、老人跌倒检测等,这些方面其实已经有了很多的参考资料了,当然在我知道的当中用yolo的倒是挺多的。那么今天我们将会通过人物跳舞的视频进行一个姿态的检测。
可以看见GIF图片中人物跳舞视频检测到的人体姿态骨架。(窗口大小的问题,膝盖下的点没有检测到)
如上图,你完全按这个模式照搬过去,完整的视频已经被我拆分好了,大家有兴趣的可以从我的GitHub中获得完整视频与拆分好的视频。
import cv2
import mediapipe as mp
import time
mpDraw = mp.solutions.drawing_utils
mpPose = mp.solutions.pose
pose = mpPose.Pose()
cap = cv2.VideoCapture('Pose_videos/02.mp4')
pTime = 0
while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = pose.process(imgRGB)
# print(results.pose_landmarks)
if results.pose_landmarks:
mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)
for id, lm in enumerate(results.pose_landmarks.landmark):
h, w, c = img.shape
print(id, lm)
cx, cy = int(lm.x * w), int(lm.y * h)
cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)
#######################################################################################
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
(255, 0, 0), 3)
cv2.imshow("Image", img)
k=cv2.waitKey(1)
if k==27:
break
import cv2
import mediapipe as mp
import time
class poseDetector():
def __init__(self, mode=False, upBody=False, smooth=True,
detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.upBody = upBody
self.smooth = smooth
self.detectionCon = detectionCon
self.trackCon=trackCon
self.mpDraw = mp.solutions.drawing_utils
self.mpPose = mp.solutions.pose
self.pose = self.mpPose.Pose(self.mode, self.upBody, self.smooth)
def findPose(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.pose.process(imgRGB)
if self.results.pose_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, self.results.pose_landmarks,
self.mpPose.POSE_CONNECTIONS)
return img
def findPosition(self, img, draw=True):
self.lmList = []
if self.results.pose_landmarks:
for id, lm in enumerate(self.results.pose_landmarks.landmark):
h, w, c = img.shape
# print(id, lm)
cx, cy = int(lm.x * w), int(lm.y * h)
self.lmList.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)
return self.lmList
def main():
cap = cv2.VideoCapture('Pose_videos/02.mp4')
pTime = 0
detector = poseDetector()
while True:
success, img = cap.read()
img = detector.findPose(img)
lmList = detector.findPosition(img, draw=False)
if len(lmList) != 0:
print(lmList[14])
cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
(255, 0, 0), 3)
cv2.imshow("Image", img)
k=cv2.waitKey(1)
if k==27:
break
if __name__ == "__main__":
main()
此模块参照与cvzone中的cvzone.PoseModule模块,大家以后也要学习一下这种制作模块的思想,对大家做项目时是很有帮助的。
import cv2
import time
import PoseModule as pm
cap = cv2.VideoCapture('Pose_videos/02.mp4')
pTime = 0
detector = pm.poseDetector()
while True:
success, img = cap.read()
img = detector.findPose(img)
lmList = detector.findPosition(img, draw=False)
if len(lmList) !=0:
print(lmList[14])
cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
(255, 0, 0), 3)
cv2.imshow("Image", img)
k = cv2.waitKey(1)
if k == 27:
break
可以看到,在以后做项目时就可以从模块当中copy代码,实现会变得更加的方便。
此为人体姿态各点的对应图,如果你想要检测某一点的信息,则需要查看此图。
(此图来源于Pose | mediapipe)
GitHub:18 Human Posture Recognition
本次项目是按照mediapipe提供的人体姿态估计的功能实现的项目,非常的基础和简单,后面如果我有更好的点子会继续更新这部分内容。