最近帮忙跑了一个实验,要用目标检测算法检测处理分割数据集,于是就涉及到了这几种数据的互相转换的问题。
主要利用opencv里面的外界矩阵方法获得边框,然后存储到xml文件中去:
import cv2
import numpy as np
import pandas as pd
import os
def cv_show(img, name):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def get_coor(img):
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 变为灰度图
# ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) ## 阈值分割得到二值化图片
# contours, heriachy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours, heriachy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# rect = cv2.minAreaRect(contours[0]) #opencv方法
# points = cv2.boxPoints(rect)
# points = np.int0(points)
conter_lists=[]
if len(contours)>1:
print('debug_begin...')
for i, contour in enumerate(contours):
# if i == len(contours)-1:
print('i:', i)
a = sorted(contour[:, 0], key=lambda x: x[0]) # 所有坐标按x轴从小到大排序
x_min = a[0][0]
x_max = a[-1][0]
b = sorted(contour[:, 0], key=lambda x: x[1]) # 所有坐标按y轴从小到大排序
y_min = b[0][1]
y_max = b[-1][1]
# rec = img
# cv2.drawContours(img, contours, i, (0, 0, 255), 5)
# cv2.rectangle(rec, (x_min, y_min), (x_max, y_max), (0, 255, 0), 3)
# cv2.imshow('rectangle', rec)
# cv2.waitKey()
if x_min==x_max:
x_min=x_min-2
if y_min==y_max:
y_min=y_min-2
assert(x_min >= 0), "x_min > 0"
assert(y_min >= 0), "y_min > 0"
conter_lists.append([x_min, y_min, x_max, y_max])
return conter_lists
def save_xml_top(src_xml_dir, img_name, h, w):
xml_file = open((src_xml_dir + '/' + img_name + '.xml'), 'a')
xml_file.write('\n' )
xml_file.write(' NUST \n')
xml_file.write(' ' + str(img_name) + '.png' + '\n')
xml_file.write(' \n' )
xml_file.write(' ' + str(w) + '\n')
xml_file.write(' ' + str(h) + '\n')
xml_file.write(' 3 \n')
xml_file.write(' \n')
xml_file.write(' 0 \n')
def save_xml_mid(src_xml_dir, img_name, x1, y1, x2, y2):
xml_file = open((src_xml_dir + '/' + img_name + '.xml'), 'a')
# xml_file.write('\n')
xml_file.write(' )
xml_file.write(' ' + 'Target' + '\n')
xml_file.write(' Unspecified \n')
xml_file.write(' 0 \n')
xml_file.write(' 0 \n')
xml_file.write(' \n' )
xml_file.write(' 1 \n')
xml_file.write(' \n')
xml_file.write(' \n' )
xml_file.write(' ' + str(x1) + '\n')
xml_file.write(' ' + str(y1) + '\n')
xml_file.write(' ' + str(x2) + '\n')
xml_file.write(' ' + str(y2) + '\n')
xml_file.write(' \n')
xml_file.write(' \n')
def save_xml_bot(src_xml_dir, img_name):
xml_file = open((src_xml_dir + '/' + img_name + '.xml'), 'a')
# xml_file.write('\n')
xml_file.write('')
file_dir = 'test_data_gt/'
save_xml_dir = 'voc_label_general/'
for name in os.listdir(file_dir):
# print(name)
# if name[-5]=='2':
img_path = os.path.join(file_dir, name)
img = cv2.imread(img_path,flags=0)
# img = cv2.imdecode(np.fromfile(img_path), dtype=np.uint8), -1)
h, w = img.shape[0],img.shape[1]
img_name = name.split('.')[0]
print(img_name)
contour_point_lists=get_coor(img)
save_xml_top(save_xml_dir,img_name, h, w)
for i, contour_point in enumerate(contour_point_lists):
save_xml_mid(save_xml_dir,img_name, contour_point[0], contour_point[1], contour_point[2], contour_point[3])
save_xml_bot(save_xml_dir,img_name)
实验的算法是coco数据格式,之后将voc数据转为coco格式:
import os
import glob
import json
import shutil
import numpy as np
import xml.etree.ElementTree as ET
START_BOUNDING_BOX_ID = 1
def get(root, name):
return root.findall(name)
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.'%(name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.'%(name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
def convert(xml_list, json_file):
json_dict = {"info":['none'], "license":['none'], "images": [], "annotations": [], "categories": []}
categories = pre_define_categories.copy()
bnd_id = START_BOUNDING_BOX_ID
all_categories = {}
for index, line in enumerate(xml_list):
# print("Processing %s"%(line))
xml_f = line
tree = ET.parse(xml_f)
root = tree.getroot()
filename = os.path.basename(xml_f)[:-4] + ".png"
#test_data
image_id = filename.split('.')[0][-3:]
#train_data
# image_id = filename.split('.')[0][-6:]
# print('filename is {}'.format(image_id))
size = get_and_check(root, 'size', 1)
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
#test_data
image = {'file_name': filename, 'height': height, 'width': width, 'id':image_id}
#train_data
# image = {'file_name': filename[:7]+'1.png', 'height': height, 'width': width, 'id':image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, 'object'):
category = get_and_check(obj, 'name', 1).text
if category in all_categories:
all_categories[category] += 1
else:
all_categories[category] = 1
if category not in categories:
if only_care_pre_define_categories:
continue
new_id = len(categories) + 1
print("[warning] category '{}' not in 'pre_define_categories'({}), create new id: {} automatically".format(category, pre_define_categories, new_id))
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(float(get_and_check(bndbox, 'xmin', 1).text))
ymin = int(float(get_and_check(bndbox, 'ymin', 1).text))
xmax = int(float(get_and_check(bndbox, 'xmax', 1).text))
ymax = int(float(get_and_check(bndbox, 'ymax', 1).text))
assert(xmax > xmin), "xmax <= xmin, {}".format(line)
assert(ymax > ymin), "ymax <= ymin, {}".format(line)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
ann = {'area': o_width*o_height, 'iscrowd': 0, 'image_id':
image_id, 'bbox':[xmin, ymin, o_width, o_height],
'category_id': category_id, 'id': bnd_id, 'ignore': 0,
'segmentation': [[xmin,ymin,xmin,ymax,xmax,ymax,xmax,ymin]]}
json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
for cate, cid in categories.items():
cat = {'supercategory': 'none', 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
print("------------create {} done--------------".format(json_file))
print("find {} categories: {} -->>> your pre_define_categories {}: {}".format(len(all_categories), all_categories.keys(), len(pre_define_categories), pre_define_categories.keys()))
print("category: id --> {}".format(categories))
print(categories.keys())
print(categories.values())
if __name__ == '__main__':
# xml标注文件夹
xml_dir = './test_data_voc'
# 训练数据的josn文件
save_json_train = './data_coco/train.json'
# 验证数据的josn文件
save_json_val = './data_coco/val.json'
# 验证数据的test文件
save_json_test = './data_coco/test.json'
# 类别,如果是多个类别,往classes中添加类别名字即可,比如['dog', 'person', 'cat']
classes = ['Target']
pre_define_categories = {}
for i, cls in enumerate(classes):
pre_define_categories[cls] = i+1
only_care_pre_define_categories = True
# 训练数据集比例
train_ratio = 0
val_ratio = 1
print('xml_dir is {}'.format(xml_dir))
xml_list = glob.glob(xml_dir + "/*.xml")
# xml_list = np.sort(xml_list)
# print('xml_list is {}'.format(xml_list))
np.random.seed(100)
np.random.shuffle(xml_list)
train_num = int(len(xml_list)*train_ratio)
val_num = int(len(xml_list)*val_ratio)
print('训练样本数目是 {}'.format(train_num))
print('验证样本数目是 {}'.format(val_num))
print('测试样本数目是 {}'.format(len(xml_list) - train_num - val_num))
xml_list_val = xml_list[:val_num]
xml_list_train = xml_list[val_num:train_num+val_num]
xml_list_test = xml_list[train_num+val_num:]
# # 对训练数据集对应的xml进行coco转换
convert(xml_list_train, save_json_train)
# # 对验证数据集的xml进行coco转换
convert(xml_list_val, save_json_val)
# 对测试数据集的xml进行coco转换
convert(xml_list_test, save_json_test)
使用coco库读取.json文件:
from pycocotools.coco import COCO
from PIL import Image,ImageDraw
coco = COCO(label_path)
img = Image.open(os.path.join(pic_path,pic_name)).convert('RGB')
draw = ImageDraw.Draw(img)
#draw_labels
ann_ids = coco.getAnnIds(imgIds=[img_ids[i]])
ann_info = coco.loadAnns(ann_ids)
for j in range(len(ann_info)):
x,y,w,h=ann_info[j]['bbox']
x1,y1,x2,y2 = int(x),int(y),int(x+w),int(y+h)
draw.rectangle((x1,y1,x2,y2))