python颜色识别_浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

【更新】主要提供两种方案:

方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值

方案二:使用opencv库函数进行处理。(效果不错)

1、将图片颜色转为hsv,

2、使用cv2.inRange()函数进行背景颜色过滤

3、将过滤后的颜色进行二值化处理

4、进行形态学腐蚀膨胀,cv2.dilate()

5、统计白色区域面积

详解:方案一:

项目实际需要,对识别出来的车车需要标记颜色,因此采用方案如下:

1、通过import PIL.ImageGrab as ImageGrab 将识别出来的汽车矩形框裁剪出来

img_color=image.crop((left,right,top,bottom))

2、将裁剪出来的image进行颜色图像识别

RGB和hsv中间的转换关系,网上很多,我也没有具体去研究如何转换的,能用就行

附上测试,封装成函数方法:

import colorsys

import PIL.Image as Image

def get_dominant_color(image):

max_score = 0.0001

dominant_color = None

for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]):

# 转为HSV标准

saturation = colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0)[1]

y = min(abs(r*2104+g*4130+b*802+4096+131072)>>13,235)

y = (y-16.0)/(235-16)

#忽略高亮色

if y > 0.9:

continue

score = (saturation+0.1)*count

if score > max_score:

max_score = score

dominant_color = (r,g,b)

return dominant_color

if __name__ == '__main__':

image = Image.open('test.jpg')

image = image.convert('RGB')

print(get_dominant_color(image))

测试图

结果

在这个网上查询RGB数值对应的颜色

方案二:opencv计算机视觉库函数处理

1、定义HSV颜色字典,参考网上HSV颜色分类

代码如下:

import numpy as np

import collections

#定义字典存放颜色分量上下限

#例如:{颜色: [min分量, max分量]}

#{'red': [array([160, 43, 46]), array([179, 255, 255])]}

def getColorList():

dict = collections.defaultdict(list)

# 黑色

lower_black = np.array([0, 0, 0])

upper_black = np.array([180, 255, 46])

color_list = []

color_list.append(lower_black)

color_list.append(upper_black)

dict['black'] = color_list

# #灰色

# lower_gray = np.array([0, 0, 46])

# upper_gray = np.array([180, 43, 220])

# color_list = []

# color_list.append(lower_gray)

# color_list.append(upper_gray)

# dict['gray']=color_list

# 白色

lower_white = np.array([0, 0, 221])

upper_white = np.array([180, 30, 255])

color_list = []

color_list.append(lower_white)

color_list.append(upper_white)

dict['white'] = color_list

#红色

lower_red = np.array([156, 43, 46])

upper_red = np.array([180, 255, 255])

color_list = []

color_list.append(lower_red)

color_list.append(upper_red)

dict['red']=color_list

# 红色2

lower_red = np.array([0, 43, 46])

upper_red = np.array([10, 255, 255])

color_list = []

color_list.append(lower_red)

color_list.append(upper_red)

dict['red2'] = color_list

#橙色

lower_orange = np.array([11, 43, 46])

upper_orange = np.array([25, 255, 255])

color_list = []

color_list.append(lower_orange)

color_list.append(upper_orange)

dict['orange'] = color_list

#黄色

lower_yellow = np.array([26, 43, 46])

upper_yellow = np.array([34, 255, 255])

color_list = []

color_list.append(lower_yellow)

color_list.append(upper_yellow)

dict['yellow'] = color_list

#绿色

lower_green = np.array([35, 43, 46])

upper_green = np.array([77, 255, 255])

color_list = []

color_list.append(lower_green)

color_list.append(upper_green)

dict['green'] = color_list

#青色

lower_cyan = np.array([78, 43, 46])

upper_cyan = np.array([99, 255, 255])

color_list = []

color_list.append(lower_cyan)

color_list.append(upper_cyan)

dict['cyan'] = color_list

#蓝色

lower_blue = np.array([100, 43, 46])

upper_blue = np.array([124, 255, 255])

color_list = []

color_list.append(lower_blue)

color_list.append(upper_blue)

dict['blue'] = color_list

# 紫色

lower_purple = np.array([125, 43, 46])

upper_purple = np.array([155, 255, 255])

color_list = []

color_list.append(lower_purple)

color_list.append(upper_purple)

dict['purple'] = color_list

return dict

if __name__ == '__main__':

color_dict = getColorList()

print(color_dict)

num = len(color_dict)

print('num=',num)

for d in color_dict:

print('key=',d)

print('value=',color_dict[d][1])

2、颜色识别

import cv2

import numpy as np

import colorList

filename='car04.jpg'

#处理图片

def get_color(frame):

print('go in get_color')

hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

maxsum = -100

color = None

color_dict = colorList.getColorList()

for d in color_dict:

mask = cv2.inRange(hsv,color_dict[d][0],color_dict[d][1])

cv2.imwrite(d+'.jpg',mask)

binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]

binary = cv2.dilate(binary,None,iterations=2)

img, cnts, hiera = cv2.findContours(binary.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

sum = 0

for c in cnts:

sum+=cv2.contourArea(c)

if sum > maxsum :

maxsum = sum

color = d

return color

if __name__ == '__main__':

frame = cv2.imread(filename)

print(get_color(frame))

3、结果

原始图像(网上找的测试图):

1)、使用cv2.inRange()函数过滤背景后图片如下:

2)、可见使用白色分量过滤背景后,出现车辆的轮廓,因此,能够计算白色区域的面积,最大的则为该物体颜色

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

你可能感兴趣的:(python颜色识别)