没有重新分配内存,只是原有数据的引用
import torch
x = torch.tensor([[1], [2], [3]])
# 维度(3,1)
new_x = x.expand(-1, 4) # -1 代表维度不变,即扩展后维度是(3,4)
# 等价于 new_x = x.expand(3, 4)
print(x)
print(new_x)
x[0][0] = 15
# 修改x的值,new_x对应的值也会改变
print(x)
print(new_x)
输出:
tensor([[1],
[2],
[3]])
tensor([[1, 1, 1, 1],
[2, 2, 2, 2],
[3, 3, 3, 3]])
tensor([[15],
[ 2],
[ 3]])
tensor([[15, 15, 15, 15],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3]])
此外,x.expand_as(other)
等价于 x.expand(other.size())
.
2. repeat
分配了新的内存
import torch
x = torch.tensor([1, 2, 3])
new_x = x.repeat(2, 1)
# 第一个维度重复两遍,第二个维度不变
print(x)
print(new_x)
x[0] = 15
# x改变,new_x不会改变
print(x)
print(new_x)
输出:
tensor([1, 2, 3])
tensor([[1, 2, 3],
[1, 2, 3]])
tensor([15, 2, 3])
tensor([[1, 2, 3],
[1, 2, 3]])