- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- Ubuntu22.04 安装autoware universe
注意事项:1,不要用conda包管理2,将autoware项目和autoware_map都放在$Home目录下3,系统的软件更新器更新包这步很重要1,装好了ubuntu22.04系统后,首先装nvidia显卡驱动autoware所需最低驱动版本为550,进入ubuntu恢复模式,启动终端输入以下命令(前提是有网络连接)wgethttps://vip.123pan.cn/1816448054/xTo
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- PyTorch安装总失败?看完这篇保姆级教程,从0到1轻松搞定!
喜欢编程就关注我
pytorch人工智能python
引言:为什么你装不好PyTorch?“CUDA版本不匹配?pip安装超时?conda环境冲突?”新手安装PyTorch的坑比代码bug还多!这篇博客整合CSDN高赞实战技巧,手把手教你绕过10大安装陷阱,附赠代码级验证指南!一、安装前必看:环境检查清单检查项操作方法Python版本python--version(推荐3.8-3.11)CUDA驱动nvidia-smi(仅NVIDIA显卡需要)con
- 深度学习Pytorch(一)
Bgemini
深度学习pytorch深度学习python
深度学习Pytorch(一)前言:必须使用英伟达显卡才能使用cuda(显卡加速)!移除环境:condaremove-npytorch--all一、安装Pytorch下载Anaconda打开AnacondaPrompt创建一个Pytorch环境:condacreate-npytorchpython=3.9激活Pytorch环境:condaactivatepytorch查看当前包:piplist安装P
- Yuzu模拟器Vulkan模式配置指南与性能优化实战
mmoo_python
性能优化windows
Yuzu模拟器Vulkan模式配置指南与性能优化实战前言:VulkanAPI为何成为模拟器性能突破口作为当前最热门的Switch模拟器,Yuzu团队近期向全体用户开放了VulkanAPI支持功能。这项技术革新不仅解决了长期困扰AMD显卡用户的兼容性问题,更通过底层渲染架构的革新,为复杂3D游戏带来显著性能提升。本文将深度解析Vulkan模式的配置流程,结合实际测试数据揭示性能优化秘诀,助力玩家畅玩
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- amd 5600g和5600x性能差距
jioulongzi
c#
23年,矿难于是买的5600g,想用核显撑一段时间。后面入手了4K显示器,发现核显还是有点吃力。于是又购置了6650XT显卡但是依然有个问题,喔配置5600g+6650xt+32g内存+1t固态。下面是在1080p中表现:就算玩个Lol,开局能200多帧,玩个十分钟一直掉帧。最低只能稳定在90+,平均应该是120.不知道为什么,包括绝地求生,单机什么的。于是今年就换了5600x,老板最后居然给我发
- RTX 30、40、50 系列显卡全面对比:谁才是你的最佳选择?
小李也疯狂
其他人工智能显卡
目录前言一、架构设计:不断进化的核心驱动力1.1RTX30系列(Ampere架构)1.2RTX40系列(AdaLovelace架构)1.3RTX50系列(Blackwell架构,假设信息,实际可能不同)二、性能表现:数字背后的实力较量2.1游戏性能1080P分辨率2K分辨率4K分辨率2.2创作性能视频编辑3D建模与渲染三、功能特性:前沿科技的魅力呈现3.1DLSS技术对比3.2光线追踪性能3.3编
- 一文详解显卡(GPU)驱动(Driver)CUDA、PyTorch 四者之间的关系、依赖性、版本兼容性,以及如何通过命令查询各自版本等方面进行系统性总结
番知了
pytorch人工智能python
目录一、四者的依赖关系概览简单理解:二、依赖链详细解释1.显卡(GPU)2.NVIDIA显卡驱动3.CUDAToolkit4.PyTorch三、版本兼容查询PyTorch与CUDA的兼容表四、版本查询命令(Linux/Windows)五、安装建议(实用路线)一、四者的依赖关系概览组件作用与其它组件的关系GPU(显卡)提供物理硬件(如NVIDIARTX4060)驱动必须支持你的显卡型号驱动Drive
- 【技术派专享】并行智算云:RTX 5090 免费算力深度评测 + 实战指南▎ 为什么开发者需要关注云端算力?
山顶望月川
人工智能云计算
在微调Llama3、训练扩散模型或跑Kaggle比赛时,本地显卡(比如RTX3090/4090)常面临显存不足、训练慢、散热差等问题。而购买多卡服务器成本极高(一台8×A100机器年成本超20万),对个人和小团队极不友好。并行智算云近期推出的“开发者扶持计划”,提供RTX5090免费算力(显存32GB,FP32算力60TFLOPS),实测比4090训练速度快1.8倍,且支持多卡并行。下面从技术优势
- NVIDIA Game Ready 显卡驱动517.48发布!为《守望先锋2》做好游戏准备
错误代码937
教程游戏windowsmicrosoft其他经验分享
NVIDIAGameReady显卡驱动517.48发布!为《守望先锋2》做好游戏准备。这款新的游戏就绪驱动程序为《守望先锋2》提供了最佳的day-0游戏体验,可帮助您在《守望先锋2》中借助NVIDIAReflex获得令人难以置信的性能水平,下面一起来看看详细的更新内容。在发布时,GeForce游戏玩家可以使用英伟达反射提高响应能力。通过减少系统延迟,NVIDIAReflex为竞技游戏提供更快的目标
- 小数据量在paddleocrv4/5训练精度不高的原因探讨
问题:训练集有69张,验证集有48张,每张图的尺寸为2592*1396或接近这个尺寸,每张图约有50到60个目标,且每张图有较多的密集小目标,这些目标区域分别是一些文字或字母或数字。电脑配置显卡是2080ti,运行内存是32g,cpu是9700k。以上条件下,在pp-ocrv3上采用ch_pp_ocrv3_det_student.yml配置并采用ch_pp_ocrv3_det_distill_tr
- 查看电脑显卡(NVIDIA)应该匹配什么版本的CUDA Toolkit
发光的小豆芽
CUDA电脑
被串行计算逼到要吐时,决定重拾CUDa了,想想那光速般的处理感觉(夸张了)不要太爽,记下我的闯关记录。正好我的电脑配了NVIDIA独显,GTX1650,有菜可以炒呀,没有英伟达的要绕道了。回到正题,查看自己的显卡应该装什么版本的Cuda驱动,具体如下:(1)在桌面空白处右键选中NVIDIA控制面(2)查看系统信息适配的CUDA版本说明显卡支持的cuda版本不能超过12.2.79。或者cmd进入窗口
- 【Python训练营打卡】day33 @浙大疏锦行
2301_77865880
MyPython训练营打卡python
DAY33简单的神经网络知识点回顾:1.PyTorch和cuda的安装2.查看显卡信息的命令行命令(cmd中使用)3.cuda的检查4.简单神经网络的流程a.数据预处理(归一化、转换成张量)b.模型的定义i.继承nn.Module类ii.定义每一个层iii.定义前向传播流程c.定义损失函数和优化器d.定义训练流程e.可视化loss过程预处理补充:注意事项:1.分类任务中,若标签是整数(如0/1/2
- DeepSeek私有化部署3:openEuler 24.03-LTS-SP1国产化操作系统安装nVidia驱动
上一篇文章中完成了国产化操作系统openEuler24.03-LTS-SP1的安装和IP地址配置,配置完成后,就回到了办公室用shell工具连接服务器开始操作了安装好新的操作系统第一步先更新一下#yum源更新sudoyum-yupdate显卡驱动下载因为在服务器上安装了6块teslaT4显卡,先看一下服务器识别到显卡没有#查看操作系统是否识别到了nVidia的显卡lspci|grep-iNVIDI
- 视频工具箱 1.1.1 |小而美的视频处理工具,支持多种常用功能
星图软件库
软件分享音视频软件工程
VideoTools是一款基于FFmpeg的小而美的视频处理工具,专为需要快速高效地进行视频编辑的用户设计。这款工具无需安装,体积仅约200KB,提供了视频压缩、格式转换、转GIF、修改分辨率、加速播放以及音频提取等多种常用功能。其用户界面简洁直观,上手即用,首次运行时可自动下载或手动指定FFmpeg路径。此外,VideoTools还支持GPU加速(兼容Intel、AMD、Nvidia显卡),让视
- 怎么看GPU好坏,有哪些关键指标,显卡性能参数全解析
芥子沫
GPU显卡GPU-Z
电脑显卡性能如何评估?本文推荐使用gpu-z软件,它能全面展现显卡各项参数,帮助您判断显卡优劣。一、显卡核心参数解析1)在GPU-Z主界面顶端,会显示显卡的具体型号(Name)如“NVIDIAGeForceRTX4090”。型号不仅代表身份,还暗示定位:数字越大通常越高端,例如RTX4090就强于RTX4070。而“架构”则是显卡的“底层设计蓝图”。以英伟达为例,RTX40系列采用AdaLovel
- diy nas配置推荐2020_从入门到高端!2020年11月组装电脑主机配置推荐+装机行情
陈马登Morden
diynas配置推荐2020
目前显卡市场依然一卡难求的行情,直到11月份都没有得到缓解,反而显得越来越紧缺,从千元级到高端显卡全面紧张,包括英伟达新一代RTX30系列稀缺,从发布RTX3080开始,基本没有几个人原价到手,到手的价格基本都是溢价比较高的,现阶段一块显卡溢价达到大概近两千元,不过旗舰级RTX3090很快打破了这个局面,货源与价格几乎回归正常,这可能是因为价格真的贵需求量小的问题,但实际也没比RTX3090性能高
- 在Ubuntu24上安装ollama
会飞的果粒橙
UbuntuLinuxollamadeepseek
安装ollama之前,建议检查显卡驱动是否安装完成。如果还未安装显卡驱动,建议先安装显卡驱动再安装ollama。安装curlsudoaptupdatesudoapt-yinstallcurl进入ollama的下载网站https://ollama.com/download/linux复制安装脚本,并在Ubuntu终端里执行安装脚本curl-fsSLhttps://ollama.com/install
- Ubuntu22.04安装CUDA12.1 cuDNN8.9.7 pytorch2.2.2
快乐的笨笨
linux
当前安装的电脑配置:电脑名称:暗影精灵5系统名称:Ubuntu22.04.4LTS操作系统类型:64位内存:8.0Gib处理器:Intel®Core™
[email protected]显卡:NVIDIACorporationTU117M[GeForceGTX1650Mobile/Max-Q]MesaI...安装前准备:需要安装对应的NVIDIA驱动程序、配置CUDA依赖环境g++gccm
- RTX50系显卡+CUDA+torch+python对应关系
前言本人的显卡是RTX5070,使用时发现它对CUDA、torch和python版本有要求,试图按照老项目的依赖文件进行安装发现安不了,因此记录一下(截至2025年6月)。提示:以下是本篇文章正文内容,下面案例可供参考一、RTX50系显卡只能使用CUDA12.8二、目前只支持torch2.7.0和2.7.11.去pytorch官网的https://download.pytorch.org/whl/
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- 使用虚幻引擎5(UE5)开发游戏的最低配置推荐
知1而N
UE5-游戏引擎虚幻5最佳实践ue5游戏
一、最低系统配置(可运行引擎)组件要求说明来源操作系统Windows1064位(版本20H2或更高)处理器4核CPU(如Inteli5-4590或AMDRyzen51600),主频≥3.0GHz内存8GBRAM(推荐32GB以上,复杂场景需64GB)显卡NVIDIAGTX970(4GB显存)或AMDRadeonR9290(4GB显存)存储100GBSSD(项目文件占用空间随复杂度增长)Direct
- 无需多卡集群,单卡运行扩散模型的技术突破与实践
源客z
stablediffusion
近年来,扩散模型(DiffusionModels)在图像、视频、3D生成等领域取得巨大进展。然而,传统扩散模型往往依赖多卡集群(如8×A100)进行高效训练与推理,这使得个人开发者和中小团队的应用受限。幸运的是,随着模型架构优化、量化技术、推理加速方案的发展,越来越多的开源扩散模型可以在单张消费级显卡(如RTX4090、T4、A6000)上运行,并且性能接近或超越原生大规模模型。本文整理了当前可在
- 计算机基础和Java编程的练习题
柳依依@
Java入门java开发语言
1.计算机的核心硬件是什么?各自有什么用?中央处理器(CPU):负责执行程序中的指令,进行算术和逻辑运算,是计算机的“大脑”。内存(RAM):临时存储CPU正在处理的程序和数据,速度快但断电后数据丢失。硬盘(HDD/SSD):永久存储操作系统、应用程序和用户数据,断电后数据不丢失。主板:连接所有硬件组件,提供数据传输的通道。显卡(GPU):负责图形渲染,将数字信号转换为图像显示在屏幕上。电源:为计
- 随机存储器有哪些,只读存储器又有哪些
我推是大富翁
计算机组成原理计算机组成原理
一、随机存储器(RAM,易失性,断电数据丢失)1.静态RAM(SRAM)特点:用触发器存储数据,无需刷新,速度极快(纳秒级),但容量小、成本高。用途:CPU缓存(如L1/L2/L3Cache)。2.动态RAM(DRAM)特点:用电容存储,需定期刷新,速度较慢(微秒级),容量大、成本低。变种:SDRAM:同步DRAM(如DDR3/DDR4/DDR5,电脑内存条)。VRAM:显卡专用显存,支持高速图像
- 恐怖黎明 决定版 中文 免安 离线运行版
与凌风000
恐怖黎明决定版
最低配置:操作系统*:WindowsXP/WindowsVista/Windows7/Windows8/Windows10处理器:x86兼容2.3GHz或更快的处理器(英特尔第2代酷睿i系列或同等产品)内存:2GB内存显卡:512MBNVIDIAGeForce6800系列或ATIRadeonX800系列或更高DirectX版本:9.0摄氏度存储空间:需要5GB可用空间声卡:兼容DirectX9.0
- 龙之信条2 DEBUG版 报错修复方法
与凌风000
教程
DEBUG版报错修复补丁启用说明解压后将“Game”里的文件覆盖并替换到游戏根目录,运行“runtime_il2cpp.exe”开始游戏。不用补丁报错解决方案2先将DD2.EXE备份,防止出错,将runtime_il2cpp.exe文件复制出一个副本,改名DD2.exe,替换掉文件里原本的dd2.exe,用改名的dd2.exe启动游戏如果还是闪退报错请参考:1.更新显卡驱动2.强制使用window
- Day33打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:PyTorch和cuda的安装查看显卡信息的命令行命令(cmd中使用)cuda的检查简单神经网络的流程数据预处理(归一化、转换成张量)#仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集fromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitimportnumpyasnp
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin