- 林轩田机器学习基石 - 学习笔记4 - 机器学习的可行性
Spareribs
@[TOC]一LearningisImpossible首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格。根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1;如果依据九宫格左上角是否是黑色,我们会把它归为-1。除此之外,还有根据其它不同特征进行分类,得到不同结果的情况。而且,这些分类
- 机器为什么能学习(上)
ringotc
本篇文章是台湾大学《机器学习基石上》的课程笔记。以PLA算法为例,推导证明机器学习的可行性。问题概述机器学习在当前发展得很快,我们不由得发问:为什么这种算法是可行的。我们说机器学习算法是可行的,是指它的损失函数值很小。比如在回归问题里,我们的目标是让我们用更为数学化的语言表述这件事情:首先定义一下本文需要用到的数学符号我们让本质上就是要使得足够小且。我们这篇文章需要证明的两个保证机器学习可行的结论
- 林轩田机器学习基石课程笔记1 -The Learing Problem
Spareribs
一什么是机器学习什么是“学习”?学习就是人类通过观察、积累经验,掌握某项技能或能力。就好像我们从小学习识别字母、认识汉字,就是学习的过程。而机器学习(MachineLearning),顾名思义,就是让机器(计算机)也能向人类一样,通过观察大量的数据和训练,发现事物规律,获得某种分析问题、解决问题的能力。在这里插入图片描述什么是“机器学习”?机器学习可以被定义为:Improvingsomeperfo
- 惊为天人,NumPy手写全部主流机器学习模型,代码超3万行
小白学视觉
python神经网络机器学习人工智能深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自|深度学习这件小事用NumPy手写所有主流ML模型,普林斯顿博士后DavidBourgin最近开源了一个非常剽悍的项目。超过3万行代码、30多个模型,这也许能打造「最强」的机器学习基石?NumPy作为Python生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为Python提供高效率的多维数组计算,并提供了一系列
- 机器学习基石第九讲:linear regression
Marcovaldo
机器学习机器学习基石笔记机器学习
博客已经迁移至Marcovaldo’sblog(http://marcovaldong.github.io/)机器学习基石第十讲介绍线性回归问题(linearregressionproblem),从这一讲开始课程介绍具体的机器学习算法。后面的大部分内容,博主已经学过,所以笔记可能会简略。LinearRegressionProblem借助信用卡发放的问题来介绍线性回归,不过这一次不再是分类,而是要让
- 机器学习基石课程总结
半亩房顶
前前后后也磨蹭了有一个月左右吧,机器学习基石终于是看完了。其实还有很多东西并不很懂,尤其是好多数学问题,不会的依然很多。但是这个课程我是打算就这么结束了,带着一堆的坑。原因如下:不宜拉长战线。数据问题肯定是需要补的,但是现阶段并不准备在数学上下很多功夫,战线拉得太长只会前支后绌。选择性学习。有些东西其实是暂时不需要甚至不宜学习的。故而暂且放下。当然,需要直面时候不能逃避的。目的性或者说功利性使然。
- 3.3 Types of Learning- Learning with Different Protocol |机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-07-18学习链接:3.3TypesofLearning-LearningwithDifferentProtocol学习参考链接:1、台湾大学林轩田机器学习基石课程学习笔记3--TypesofLearning按照不同的协议,机器学习可以分为三种类型:BatchLearningOnlineActiveLearning1.BatchLearningbatchlearnin
- 1.5 The Leaming Problem-Machine Leaming and other Fields|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-06-27学习链接:1.5TheLeamingProblem-MachineLeamingandotherFields1.MachineLearningandDataMining(机器学习与数据挖掘)讲完了机器学习完整的流程,下面将一下机器学习与其他相关领域的关系第一个讲的领域就是数据挖掘,数据挖掘与机器学习有什么不一样,如下:机器学习是用资料找出一个假说g,然后跟我
- 机器学习--------考试复习笔记
懒懒的程序媛
机器学习
1.机器学习基石–学习的可行性本文主要是通过Hoeffding不等式证明了当模型的所有hypothesis的个数M为有限个时,样本数目N足够大时,就能够保证泛化误差Eout(h)和训练误差Ein(h)很接近。这时候只要找到一个hypothesis使得Ein(h)很小,那么Eout(h)也会很小,从而达到学习的目的。当然有一个大前提就是训练样本和测试样本必须要在同一分布下产生,否则学习无从谈起。Th
- python机器学习算法实训 - (二) 手写岭回归和lasso回归
印第安老斑鸠啾
机器学习算法机器学习python数据分析数据挖掘
是的,我来更新了。线性模型之间还是很相似的,有了线性回归,其他的也好展开了。理论部分两张图来自林轩田老师的机器学习基石,向同学们推荐一手。岭回归和Lasso回归1.1什么是过拟合如图所示,在数据量不够大的情况下,如果我们使用一个高阶多项式(图中红色曲线所示),例如10阶,对目标函数(蓝色曲线)进行拟合。拟合曲线波动很大,虽然Ein很小,但是Eout很大,也就造成了过拟合现象。我们看似在数据集上获得
- 收集一些有用的网址
Sundw_RUC
1.吴恩达深度学习课后作业汇总2.机器学习基石课后练习汇总3.sublimetext主题生成器持续更新
- 林轩田机器学习基石课程笔记3 - 机器学习类型
Spareribs
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA。PLA能够在平面中选择一条直线将样本数据完全正确分类。而对于线性不可分的情况,可以使用PocketAlgorithm来处理。本节课将主要介绍一下机器学习有哪些种类,并进行归纳。主要的视频讲解:林轩田机器学习基石P10林轩田机器学习基石P11林轩田机器学习基石P12林轩田机器学习基石P13一LearningwithDifferentOut
- 机器学习笔记(5,6)--林轩田机器学习基石课程
数学系的计算机学生
这两个lecture,集中证明了,当我的hepothesis个数看起来有无限多种时,也就是前面讲到的,找一个超平面(直线)做二元划分问题时,超平面(直线)应该有无限多个,那PLA还能否能learning的问题。具体的证明过程不在复述了,提一下我认为最重要的一点:当出现break的时候,就意味着,hepothesisset的个数会是多项式多个,具体是通过动态规划bound住上界的方法。以后等基石看完
- 机器学习技法(二)
宣的写字台
《机器学习技法》是国立台湾大学林轩田讲授的一门课程,课程的上集是《机器学习基石》。相关资源可以在youtube找到,也可在评论区索要云盘链接。本文主要是我学完一遍基石&技法后的笔记梳理,如果存疑请以原课程讲授内容为准,欢迎讨论~[注]本文仅适用于帮助复习,不适用于代替视频课程。技法分为3个部分,分别为●核模型:嵌入大量特征(6小节)●融合模型:融合预测性特征(5小节)●抽取模型:提取隐性特征(4小
- 《机器学习基石前四章复习》
圈圈圈小明
机器学习人工智能
【引言】训练样本D和最终测试h的样本都是来自同一个数据分布,这是机器能够学习的前提。另外,训练样本D应该足够大,且hypothesisset的个数是有限的,这样根据霍夫丁不等式,才不会出现BadData,保证Ein≈Eout,即有很好的泛化能力。同时,通过训练,得到使Ein最小的h,作为模型最终的矩g,g接近于目标函数。这里,我们总结一下前四节课的主要内容:第一节课,我们介绍了机器学习的定义,目标
- 机器学习
南_橘子猪
1.白板推导系列,up主shuhuai008的个人空间-哔哩哔哩(゜-゜)つロ乾杯~Bilibili2.up主,主要是机器学习的数学推导GRNovmbrain的个人空间-哔哩哔哩(゜-゜)つロ乾杯~Bilibiliup主,陆小亮,读书笔记视频>陆小亮的个人空间_哔哩哔哩_Bilibili林轩田>林轩田机器学习基石(国语)_哔哩哔哩_bilibili3.覃秉丰up主,不仅讲机器学习的算法基础,项目实
- 4-3 Connection to Learning&4-4 Connection to Real Learning|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-07-25学习链接:4-3ConnectiontoLearning4-4ConnectiontoRealLearning学习参考链接:1、台湾大学林轩田机器学习基石课程学习笔记4--FeasibilityofLearning2、《机器学习基石》学习笔记1.ConnectiontoLearning那么如何通过抽弹珠这个例子跟我们的Learning相联系呢?下面,我们将罐
- 林轩田机器学习基石课程笔记2 - 学习回答Yes/No
Spareribs
上节课,我们主要简述了机器学习的定义及其重要性,并用流程图的形式介绍了机器学习的整个过程:根据模型H,使用演算法,在训练样本上进行训练,得到最好的,其对应的就是我们最后需要的机器学习的模型函数,一般接近于目标函数。本节课将继续深入探讨机器学习问题,介绍感知机Perceptron模型,并推导课程的第一个机器学习算法:。主要的视频讲解:林轩田机器学习基石P6林轩田机器学习基石P7林轩田机器学习基石P8
- 机器学习笔记(2-4)--林轩田机器学习基石课程
数学系的计算机学生
Non-SeparateData当我们不知道数据集是否线性可分时,我们采用贪心的算法,构建modifiedPLA.ModifiedPLA:和普通的PLA不同的是,它在选点时采用随机的方法,并且采用贪心的思想,保存当前最好的w_t.好不好的标准在于造成的错误点数是否更少。直到运行时间足够久后才停止算法。
- 林轩田-机器学习基石-课程笔记1
小T数据站
关于learninglearning:通过观察获取技能ML:通过计算数据获得技能learning&ML什么时候使用机器学习存在一些潜在的模型可以被学习但规则不容易用程式写出来有关于这些模型的资料机器学习流程f:是真实存在的模型,但我们不知道D:是用来学习的训练集A:是学习用到的算法H:是学习到的模型的假设g:是学习到的模型机器学习流程图与机器学习相关的领域数据挖掘:与机器学习难分难解人工智能:机器
- 【机器学习基石】1-1,1-2,1-3 课程引导&机器学习适用场景
茹忆小玉儿
Lec1-1引导机器学习是理论和方法结合的一门学问。理论(道)机器学习方法的假设、推论、结论、作用。是前辈设计的漂亮数学及算法。缺点:可能会让你觉得不够实用。方法(术)机器学习不缺方法。每天都有几十几百个新的方法在产生。缺点:若只是快速学使用方法,招数虽多,临阵时可能不知道如何妥善选择和使用方法。课程设置:从基础切入哲学:机器学习的思想数学:工具算法:设计和使用学会这些,把机器学习变成你的工具,而
- 林轩田机器学习基石课程笔记2 - 知识点补充2
Spareribs
详细笔记查看林轩田机器学习基石课程笔记2-学习回答Yes/No问题在解释GuaranteeofPLA这个问题过程中,提及到了3个内容的推导:内积越大,那表示是在接近目标权重但是内积更大,可能是向量长度更大了,不一定是向量间角度更小的增长被限制了,与向量长度不会差别太大详细说明问题1:内积越大,那表示是在接近目标权重首先有2个网站解释内积是什么向量点乘,叉乘为什么两个向量的点积越大,表明两者越相似?
- 用 NumPy 手写 30 个主流机器学习算法,GitHub 9K 星,全都开源了!
视学算法
python机器学习人工智能深度学习神经网络
转自|机器之心参与|思源、一鸣、张倩用NumPy手写所有主流ML模型,普林斯顿博士后DavidBourgin最近开源了一个非常剽悍的项目。超过3万行代码、30多个模型,这也许能打造「最强」的机器学习基石?NumPy作为Python生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为Python提供高效率的多维数组计算,并提供了一系列高等数学函数,我们可以快速搭建模型的整个计算流程。毫不负责任
- 机器学习笔记(1)--林轩田机器学习基石课程
数学系的计算机学生
MachineLearningandotherField机器学习和数据挖掘:机器学习是通过数据训练,借助设计的机器学习演算法,从众多的假说中,找到一个最接近最优映射关系f的过程。机器学习的模型就是机器学习演算法加上假设集。数据挖掘是从众多数据中,找到、挖掘出自己感兴趣的某个点。当你感兴趣的这个点正好是机器学习所要寻找的映射关系g的时候,数据挖掘就成了机器学习。机器学习和人工智能:人工智能是让机器做
- 机器学习笔记(2-3)--林轩田机器学习基石课程
数学系的计算机学生
GuranteeofPLA这一小节,老师解决了我上一节中遗留的问题。首先,只有当数据集data是线性可分的时候,才存在f超平面,将空间没有错误地划分成两块。所以,PLA才能输出一个可行解g。其次,证明PLA可以在有限步输出g分为三部分:证明w_f·w_{t+1}>w_f·w_{t}(其中w_f是最优解f对应的权向量):这一证明意味着,经过不断的修正,w_t会变得越来越接近理想的w_f。证明w_{t
- 机器学习基石第一次作业
ThomasYoungK
coursera林轩田的《机器学习基石》很有意思,我把一些编程作业总结在这里,参考了macJiang的答案:https://blog.csdn.net/a1015553840/article/details/51085129:作业115-17是naivepla(perceptronlearningalgorithm),算法如下:初始化wrepeat{1.寻找w(t)的下一个错误分类点(x,y)(即
- 机器学习基石第六节
半亩房顶
TheoryofGeneralization本章没怎么看懂,暂时先跳过,回头再来看,暂时看的一篇笔记,大体有些了解了,记住了一些推导和结论。Poly(N)关于参数N的特征多项式转自http://www.cnblogs.com/HappyAngel/p/3622333.html十分感谢这位前辈,私自转载以备留存,请见谅上一节课,我们主要探讨了当M的数值大小对机器学习的影响。如果M很大,那么就不能保证
- 【台大林轩田《机器学习基石》笔记】Lecture 10——Logistic Regression
T1en
机器学习机器学习算法logisticregression逻辑回归
文章目录Lecture10:LogisticRegressionLogisticRegressionProblemLogisticRegressionErrorGradientofLogisticRegressionErrorGradientDescentLecture10:LogisticRegressionLogisticRegressionProblem如果我们想从患者的各种身体信息来推断其
- 机器学习之多元分类(机器学习基石)
N-Paradigm
MachineLearning机器学习数据科学家之路多元分类机器学习多元分类机器学习基石
一个案例如上图所示我们要使用一些线性模型来分割这四种不同的图案,利用以前学过的二元分类我们可以将某一个种类分别从整体中分离出来。比如将图通是方块和不是方块的做二元分类,是三角形的和不是三角形的进行分类等等,然后我们得到下图:问题的出现如上图所示我们在单独的分割中可以分别将我们想要的目标图案分割出来,但是我们将这些图标片综合起来看得到下图:在图中带有标号的区域就是公共区域,在公共区域内的判断是矛盾的
- 机器学习方法的分类——(机器学习基石3)
Lxs_
机器学习机器学习
这周学习的主要是一些理论知识,介绍机器学习的不同学习方法。不同的分类方式可以得出不同的学习类型,下面是总体的四种分类方式:1.按照不同的输出空间Y分类2.按照不同的数据标签yn分类3.按照不同得到目标函数的方式分类4.按照不同的输入空间X分类(1)按照不同的输出空间Y分类这个问题林老师列出了三种学习方式,分别是分类问题,回归问题,结构标记问题。之前的PLA是一种简单的二元分类问题,多元分类的话就是
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio