num_sequence.py
"""
数字序列化方法
"""
class NumSequence:
"""
input : intintint
output :[int,int,int]
"""
PAD_TAG = ""
UNK_TAG = ""
SOS_TAG = ""
EOS_TAG = ""
PAD = 0
UNK = 1
SOS = 2
EOS = 3
def __init__(self):
self.dict = {
self.PAD_TAG:self.PAD,
self.UNK_TAG: self.UNK,
self.SOS_TAG: self.SOS,
self.EOS_TAG: self.EOS
}
#0--》int ,1--->int,2--->int
for i in range(0,10):
self.dict[str(i)] = len(self.dict)
self.inverse_dict = dict(zip(self.dict.values(),self.dict.keys()))
def transform(self,sentence,max_len=None,add_eos=False):
"""
实现转化为数字序列
:param sentence: list() ,["1","2","5"...str]
:param max_len: int
:param add_eos: 是否要添加结束符
:return: [int,int,int]
"""
if add_eos : #不是必须的,仅仅是为了最终句子的长度=设置的max;如果没有,最终的句子长度= max_len+1
max_len = max_len - 1
if max_len is not None:
if len(sentence)> max_len:
sentence = sentence[:max_len]
else:
sentence = sentence + [self.PAD_TAG]*(max_len-len(sentence))
if add_eos:
if sentence[-1] == self.PAD_TAG: #句子中有PAD,在PAD之前添加EOS
pad_index = sentence.index(self.PAD_TAG)
sentence.insert(pad_index,self.EOS_TAG)
else:#句子中没有PAD,在最后添加EOS
sentence += [self.EOS_TAG]
return [self.dict.get(i,self.UNK) for i in sentence]
def inverse_transform(self,incides):
"""
把序列转化为数字
:param incides:[1,3,4,5,2,]
:return: "12312312"
"""
result = []
for i in incides:
temp = self.inverse_dict.get(i, self.UNK_TAG)
if temp != self.EOS_TAG: #把EOS之后的内容删除,123---》1230EOS,predict 1230EOS123
result.append(temp)
else:
break
return "".join(result)
def __len__(self):
return len(self.dict)
if __name__ == '__main__':
num_Sequence = NumSequence()
print(num_Sequence.dict)
s = list("123123")
ret = num_Sequence.transform(s)
print(ret)
ret = num_Sequence.inverse_transform(ret)
print(ret)
dataset.py
"""
准备数据集
"""
from torch.utils.data import DataLoader,Dataset
import numpy as np
import config
import torch
class NumDataset(Dataset):
def __init__(self,train=True):
np.random.seed(9) if train else np.random.seed(10)
self.size = 400000 if train else 100000
self.data = np.random.randint(1,1e8,size=self.size)
def __len__(self):
return self.size
def __getitem__(self, idx):
input = list(str(self.data[idx]))
target = input+["0"]
return input,target,len(input),len(target)
def collate_fn(batch):
"""
:param batch:[(一个getitem的结果),(一个getitem的结果),(一个getitem的结果)、、、、]
:return:
"""
#把batch中的数据按照input的长度降序排序
batch = sorted(batch,key=lambda x:x[-2],reverse=True)
input,target,input_len,target_len = zip(*batch)
input = torch.LongTensor([config.ns.transform(i,max_len=config.max_len) for i in input])
target = torch.LongTensor([config.ns.transform(i,max_len=config.max_len,add_eos=True) for i in target])
input_len = torch.LongTensor(input_len)
target_len = torch.LongTensor(target_len)
return input,target,input_len,target_len
def get_dataloader(train=True):
batch_size = config.train_batchsize if train else config.test_batch_size
return DataLoader(NumDataset(train),batch_size=batch_size,shuffle=False,collate_fn=collate_fn)
if __name__ == '__main__':
loader = get_dataloader(train=False)
for idx,(input,target,input_len,target_len) in enumerate(loader):
print(idx)
print(input)
print(target)
print(input_len)
print(target_len)
break
config.py
"""
配置文件
"""
from num_sequence import NumSequence
import torch
device= torch.device("cpu")
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_batchsize = 256
test_batch_size = 1000
ns = NumSequence()
max_len = 10
encoder.py
"""
进行编码
"""
import torch.nn as nn
from torch.nn.utils.rnn import pad_packed_sequence,pack_padded_sequence
import config
class Encoder(nn.Module):
def __init__(self):
super(Encoder,self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(config.ns),
embedding_dim=50,
padding_idx=config.ns.PAD
)
self.gru = nn.GRU(input_size=50,
hidden_size=64,
num_layers=1,
batch_first=True,
bidirectional=False,
dropout=0)
def forward(self, input,input_len):
input_embeded = self.embedding(input)
#对输入进行打包
input_packed = pack_padded_sequence(input_embeded,input_len,batch_first=True)
#经过GRU处理
output,hidden = self.gru(input_packed)
# print("encoder gru hidden:",hidden.size())
#进行解包
output_paded,seq_len = pad_packed_sequence(output,batch_first=True,padding_value=config.ns.PAD)
return output_paded,hidden #[1,batch_size,encoder_hidden_size]
decoder.py
"""
实现解码器
"""
import torch.nn as nn
import config
import torch
import torch.nn.functional as F
import numpy as np
class Decoder(nn.Module):
def __init__(self):
super(Decoder,self).__init__()
self.embedding = nn.Embedding(num_embeddings=len(config.ns),
embedding_dim=50,
padding_idx=config.ns.PAD)
#需要的hidden_state形状:[1,batch_size,64]
self.gru = nn.GRU(input_size=50,
hidden_size=64,
num_layers=1,
bidirectional=False,
batch_first=True,
dropout=0)
#假如encoder的hidden_size=64,num_layer=1 encoder_hidden :[2,batch_sizee,64]
self.fc = nn.Linear(64,len(config.ns))
def forward(self, encoder_hidden):
#第一个时间步的输入的hidden_state
decoder_hidden = encoder_hidden #[1,batch_size,encoder_hidden_size]
#第一个时间步的输入的input
batch_size = encoder_hidden.size(1)
decoder_input = torch.LongTensor([[config.ns.SOS]]*batch_size).to(config.device) #[batch_size,1]
# print("decoder_input:",decoder_input.size())
#使用全为0的数组保存数据,[batch_size,max_len,vocab_size]
decoder_outputs = torch.zeros([batch_size,config.max_len,len(config.ns)]).to(config.device)
for t in range(config.max_len):
decoder_output_t,decoder_hidden = self.forward_step(decoder_input,decoder_hidden)
decoder_outputs[:,t,:] = decoder_output_t
#获取当前时间步的预测值
value,index = decoder_output_t.max(dim=-1)
decoder_input = index.unsqueeze(-1) #[batch_size,1]
# print("decoder_input:",decoder_input.size())
return decoder_outputs,decoder_hidden
def forward_step(self,decoder_input,decoder_hidden):
'''
计算一个时间步的结果
:param decoder_input: [batch_size,1]
:param decoder_hidden: [batch_size,encoder_hidden_size]
:return:
'''
decoder_input_embeded = self.embedding(decoder_input)
# print("decoder_input_embeded:",decoder_input_embeded.size())
out,decoder_hidden = self.gru(decoder_input_embeded,decoder_hidden)
#out :【batch_size,1,hidden_size】
out_squeezed = out.squeeze(dim=1) #去掉为1的维度
out_fc = F.log_softmax(self.fc(out_squeezed),dim=-1) #[bathc_size,vocab_size]
# out_fc.unsqueeze_(dim=1) #[bathc_size,1,vocab_size]
# print("out_fc:",out_fc.size())
return out_fc,decoder_hidden
def evaluate(self,encoder_hidden):
# 第一个时间步的输入的hidden_state
decoder_hidden = encoder_hidden # [1,batch_size,encoder_hidden_size]
# 第一个时间步的输入的input
batch_size = encoder_hidden.size(1)
decoder_input = torch.LongTensor([[config.ns.SOS]] * batch_size).to(config.device) # [batch_size,1]
# print("decoder_input:",decoder_input.size())
# 使用全为0的数组保存数据,[batch_size,max_len,vocab_size]
decoder_outputs = torch.zeros([batch_size, config.max_len, len(config.ns)]).to(config.device)
decoder_predict = [] #[[],[],[]] #123456 ,targe:123456EOS,predict:123456EOS123
for t in range(config.max_len):
decoder_output_t, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
decoder_outputs[:, t, :] = decoder_output_t
# 获取当前时间步的预测值
value, index = decoder_output_t.max(dim=-1)
decoder_input = index.unsqueeze(-1) # [batch_size,1]
# print("decoder_input:",decoder_input.size())
decoder_predict.append(index.cpu().detach().numpy())
#返回预测值
decoder_predict = np.array(decoder_predict).transpose() #[batch_size,max_len]
return decoder_outputs, decoder_predict
seq2seq.py
"""
完成seq2seq模型
"""
import torch.nn as nn
from encoder import Encoder
from decoder import Decoder
class Seq2Seq(nn.Module):
def __init__(self):
super(Seq2Seq,self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, input,input_len):
encoder_outputs,encoder_hidden = self.encoder(input,input_len)
decoder_outputs,decoder_hidden = self.decoder(encoder_hidden)
return decoder_outputs
def evaluate(self,input,input_len):
encoder_outputs, encoder_hidden = self.encoder(input, input_len)
decoder_outputs, decoder_predict = self.decoder.evaluate(encoder_hidden)
return decoder_outputs,decoder_predict
train.py
"""
进行模型的训练
"""
import torch
import torch.nn.functional as F
from seq2seq import Seq2Seq
from torch.optim import Adam
from dataset import get_dataloader
from tqdm import tqdm
import config
import numpy as np
import pickle
from matplotlib import pyplot as plt
from eval import eval
import os
model = Seq2Seq().to(config.device)
optimizer = Adam(model.parameters())
if os.path.exists("./models/model.pkl"):
model.load_state_dict(torch.load("./models/model.pkl"))
optimizer.load_state_dict(torch.load("./models/optimizer.pkl"))
loss_list = []
def train(epoch):
data_loader = get_dataloader(train=True)
bar = tqdm(data_loader,total=len(data_loader))
for idx,(input,target,input_len,target_len) in enumerate(bar):
input = input.to(config.device)
target = target.to(config.device)
input_len = input_len.to(config.device)
optimizer.zero_grad()
decoder_outputs = model(input,input_len) #[batch_Size,max_len,vocab_size]
predict = decoder_outputs.view(-1,len(config.ns))
target = target.view(-1)
loss = F.nll_loss(predict,target,ignore_index=config.ns.PAD)
loss.backward()
optimizer.step()
loss_list.append(loss.item())
bar.set_description("epoch:{} idx:{} loss:{:.6f}".format(epoch,idx,np.mean(loss_list)))
if idx%100 == 0:
torch.save(model.state_dict(),"./models/model.pkl")
torch.save(optimizer.state_dict(),"./models/optimizer.pkl")
pickle.dump(loss_list,open("./models/loss_list.pkl","wb"))
if __name__ == '__main__':
for i in range(5):
train(i)
eval()
plt.figure(figsize=(50,8))
plt.plot(range(len(loss_list)),loss_list)
plt.show()
eval.py
"""
进行模型的评估
"""
import torch
import torch.nn.functional as F
from seq2seq import Seq2Seq
from torch.optim import Adam
from dataset import get_dataloader
from tqdm import tqdm
import config
import numpy as np
import pickle
from matplotlib import pyplot as plt
def eval():
model = Seq2Seq().to(config.device)
model.load_state_dict(torch.load("./models/model.pkl"))
loss_list = []
acc_list = []
data_loader = get_dataloader(train=False) #获取测试集
with torch.no_grad():
for idx,(input,target,input_len,target_len) in enumerate(data_loader):
input = input.to(config.device)
# target = target #[batch_size,max_len]
input_len = input_len.to(config.device)
#decoder_predict:[batch_size,max_len]
decoder_outputs,decoder_predict = model.evaluate(input,input_len) #[batch_Size,max_len,vocab_size]
loss = F.nll_loss(decoder_outputs.view(-1,len(config.ns)),target.to(config.device).view(-1),ignore_index=config.ns.PAD)
loss_list.append(loss.item())
#把traget 和 decoder_predict进行inverse_transform
target_inverse_tranformed = [config.ns.inverse_transform(i) for i in target.numpy()]
predict_inverse_tranformed = [config.ns.inverse_transform(i)for i in decoder_predict]
cur_eq =[1 if target_inverse_tranformed[i] == predict_inverse_tranformed[i] else 0 for i in range(len(target_inverse_tranformed))]
acc_list.extend(cur_eq)
# print(np.mean(cur_eq))
print("mean acc:{} mean loss:{:.6f}".format(np.mean(acc_list),np.mean(loss_list)))
def interface(_input): #进行预测
model = Seq2Seq().to(config.device)
model.load_state_dict(torch.load("./models/model.pkl"))
input = list(str(_input))
input_len = torch.LongTensor([len(input)]) #[1]
input = torch.LongTensor([config.ns.transform(input)]) #[1,max_len]
with torch.no_grad():
input = input.to(config.device)
input_len = input_len.to(config.device)
_, decoder_predict = model.evaluate(input, input_len) # [batch_Size,max_len,vocab_size]
# decoder_predict进行inverse_transform
pred = [config.ns.inverse_transform(i) for i in decoder_predict]
print(_input,"---->",pred[0])
if __name__ == '__main__':
interface("89767678")