reserved in total by pytorch_Pytorch之GoogleNet实战

公众号:人工智能Corner,学习资料都在这,欢迎关注。
代码在GitHub同步更新:
安辰的GitHub​github.com

数据集:花数据集,下载方式去我的另一篇文章:

安辰:Pytorch 训练自己的数据集​zhuanlan.zhihu.com

优点(个人理解):

  1. 采用了1*1的卷积神经网络:可以在保证Feature Map尺寸保持不变的情况下,减少通道维度,减小了计算量;增加了非线性;可以把各个通道的特征给融合起来,实现了跨通道的交互和信息整合。
  2. 采用了Inception结构:通过多个大小不同的卷积核来提取特征,最后进行融合(通道维度的拼接),增加了不同尺度的适应性,可以得到更好的表征。
  3. 即增加了深度,又增加了宽度。

Inception结构

GoogleNet

代码如下:

# -*- coding: utf-8 -*-
"""
Created on Wed Sep 23 08:48:38 2020

@author: 安辰
"""
import torch 
import torchvision
import torch.nn as nn
import torchvision.transforms as transforms
import torchsummary as summary
import os
'''定义超参数'''
class_nums=10
epoch_total=10
learning_rate=1e-3
batch_size=32

'''创建Transform'''
data_transform={
    
    "train":transforms.Compose([
            
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
        ]),
    
    "val":transforms.Compose([
            
            transforms.Resize((224,224)),
            transforms.ToTensor(),
            transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
        ])
    
}

'''创建公共卷积层'''

def conv(in_channels,out_channels,kernel_size,stride=1,padding=0):
    
    return nn.Sequential(
        
        nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,stride=stride,padding=padding),
        
        nn.ReLU(inplace=True)
    )

'''创建Inception层'''
class Inception(nn.Module):
    
    def __init__(self,in_channels,ch1,ch3reduce,ch3,ch5reduce,ch5,pool_proj):
        
        super(Inception,self).__init__()
        
        self.branch1=conv(in_channels,ch1,kernel_size=1)
        
        self.branch2=nn.Sequential(
            conv(in_channels, ch3reduce, kernel_size=1),
            conv(ch3reduce, ch3, kernel_size=3,stride=1,padding=1)
        )
        
        self.branch3=nn.Sequential(
            conv(in_channels, ch5reduce, kernel_size=1),
            conv(ch5reduce, ch5, kernel_size=5,stride=1,padding=2)
        )
        
        self.branch4=nn.Sequential(
            nn.MaxPool2d(kernel_size=3,stride=1,padding=1),
            conv(in_channels, pool_proj, kernel_size=1)
        )
    
    def forward(self,x):
        
        block1=self.branch1(x)
        block2=self.branch2(x)
        block3=self.branch3(x)
        block4=self.branch4(x)
        
        block=[block1,block2,block3,block4]
        
        return torch.cat(block,dim=1)

'''创建GoogleNet'''

class GoogleNet(nn.Module):
    
    def __init__(self):
        
        super(GoogleNet,self).__init__()
         
        self.block1=nn.Sequential(
            
            conv(3,64, kernel_size=7,stride=2,padding=3),
            
            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)
            
        )
        
        self.block2=nn.Sequential(
            
            conv(64,64,kernel_size=1),
            
            conv(64,192,kernel_size=3,stride=1,padding=1),
            
            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)
            
        )
            
        
        self.block3=nn.Sequential(
            
            Inception(192, 64, 96, 128, 16, 32, 32),
            Inception(256, 128, 128, 192, 32, 96, 64),
            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)
        )
        
        self.block4=nn.Sequential(
            
            Inception(480, 192, 96, 208, 16, 48, 64),
            Inception(512, 160, 112, 224, 24, 64, 64),
            Inception(512, 128, 128, 256, 24, 64, 64),
            Inception(512, 112, 144, 288, 32, 64, 64),
            Inception(528, 256, 160, 320, 32, 128, 128),
            nn.MaxPool2d(kernel_size=3,stride=2,ceil_mode=True)
        )
        
        self.block5=nn.Sequential(
            
            Inception(832, 256, 160, 320, 32, 128, 128),
            Inception(832, 384, 192, 384, 48, 128, 128),
            nn.AdaptiveAvgPool2d((1,1)),
            nn.Dropout(0.4)
        )
        
        self.classifier = nn.Linear(1024, class_nums)
        
    def forward(self,x):
          
        x = self.block1(x)

        x = self.block2(x)

        x = self.block3(x)

        x = self.block4(x)

        x = self.block5(x)

        x = torch.flatten(x,start_dim=1)
        
        x = self.classifier(x)
        
        return x
    

'''获取数据'''

data_root=os.path.abspath(os.path.join(os.getcwd(),"../"))
image_root=data_root+"/DataSet/flower_data"

train_dataset=torchvision.datasets.ImageFolder(root=image_root+"/train",transform=data_transform["train"])
val_dataset=torchvision.datasets.ImageFolder(root=image_root+"/val",transform=data_transform["val"])

'''装载数据'''

train_loader=torch.utils.data.DataLoader(dataset=train_dataset,shuffle=True,batch_size=batch_size)
val_loader=torch.utils.data.DataLoader(dataset=val_dataset,shuffle=False,batch_size=batch_size)

'''调用模型'''
model=GoogleNet()

summary.summary(model, input_size=(3,224,224),batch_size=batch_size,device="cpu")

'''设置损失函数和优化器'''
loss_function=nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(),lr=learning_rate)

'''开始训练'''

def train():
    
    step_total=len(train_loader)
    
    for epoch in range(epoch_total):
        
        for step,(image,label) in enumerate(train_loader):
            
            pred=model(image)
            
            loss=loss_function(pred,label)
            
            optimizer.zero_grad()
            
            loss.backward()
            
            optimizer.step()
            
            if (step+1) % 100 == 0:
                
                print("Epoch:[{}/{}],step:[{}/{}],epoch:{:.4f}".format(epoch,epoch_total,step, step_total,loss.item()))
                
'''调用train'''
if __name__ == '__main__':
    
    train()

有GPU的大佬可以跑一跑,下载数据集那块有点小麻烦,不过也很简单,如果您跑完之后,还请将结果私信给我一下,感激不尽。

如果对您有帮助,点个关注不迷路。

你可能感兴趣的:(reserved,in,total,by,pytorch)