机器算法有哪几种 python_机器学习10种经典算法的Python实现

广义来说,有三种机器学习算法

1、 监督式学习

工作机制:这个算法由一个目标变量或结果变量(或因变量)组成。这些变量由已知的一系列预示变量(自变量)预测而来。利用这一系列变量,我们生成一个将输入值映射到期望输出值的函数。这个训练过程会一直持续,直到模型在训练数据上获得期望的精确度。监督式学习的例子有:回归、决策树、随机森林、K – 近邻算法、逻辑回归等。

2、非监督式学习

工作机制:在这个算法中,没有任何目标变量或结果变量要预测或估计。这个算法用在不同的组内聚类分析。这种分析方式被广泛地用来细分客户,根据干预的方式分为不同的用户组。非监督式学习的例子有:关联算法和 K – 均值算法。

3、强化学习

工作机制:这个算法训练机器进行决策。它是这样工作的:机器被放在一个能让它通过反复试错来训练自己的环境中。机器从过去的经验中进行学习,并且尝试利用了解最透彻的知识作出精确的商业判断。 强化学习的例子有马尔可夫决策过程。

常见机器学习算法名单

这里是一个常用的机器学习算法名单。这些算法几乎可以用在所有的数据问题上:

线性回归

逻辑回归

决策树

SVM

朴素贝叶斯

K最近邻算法

K均值算法

随机森林算法

降维算法

Gradient Boost 和 Adaboost 算法

1、线性回归

线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。

理解线性回归的最好办法是回顾一下童年。假设在不问对方体重的情况下,让一个五年级的孩子按体重从轻到重的顺序对班上的同学排序,你觉得这个孩子会怎么做?他(她)很可能会目测人们的身高和体型,综合这些可见的参数来排列他们。这是现实生活中使用线性回归的例子。实际上,这个孩子发现了身高和体型与体重有一定的关系,这个关系看起来很像上面的等式。

在这个等式中:

Y:因变量

a:斜率

x:自变量

b :截距

系数 a 和 b 可以通过最小二乘法获得。

参见下例。我们找出最佳拟合直线 y=0.2811x+13.9 。已知人的身高,我们可以通过这条等式求出体重。

线性回归的两种主要类型是一元线性回归和多元线性回归。一元线性回归的特点是只有一个自变量。多元线性回归的特点正如其名,存在多个自变量。找最佳拟合直线的时候,你可以拟合到多项或者曲线回归。这些就被叫做多项或曲线回归。

Python 代码

#Import Library#Import other necessary libraries like pandas, numpy...from sklearn import linear_model#Load Train and Test datasets#Identify feature and response variable(s) and values must be numeric and numpy arraysx_train=input_variables_values_training_datasetsy_train=target_variables_values_training_datasetsx_test=input_variables_values_test_datasets# Create linear regression objectlinear = linear_model.LinearRegression()# Train the model using the training sets and check scorelinear.fit(x_train, y_train)linear.score(x_train, y_train)#Equation coefficient and Interceptprint("Coefficient: n", linear.coef_)print("Intercept: n", linear.intercept_)#Predict Outputpredicted= linear.predict(x_test)

2、逻辑回归

别被它的名字迷惑了!这是一个分类算法而不是一个回归算法。该算法可根据已知的一系列因变量估计离散数值(比方说二进制数值 0 或 1 ,是或否,真或假)。简单来说,它通过将数据拟合进一个逻辑函数来预估一个事件出现的概率。因此,它也被叫做逻辑回归。因为它预估的是概率,所以它的输出值大小在 0 和 1 之间(正如所预计的一样)。

让我们再次通过一个简单的例子来理解这个算法。

假设你的朋友让你解开一个谜题。这只会有两个结果:你解开了或是你没有解开。想象你要解答很多道题来找出你所擅长的主题。这个研究的结果就会像是这样:假设题目是一道十年级的三角函数题,你有 70%的可能会解开这道题。然而,若题目是个五年级的历史题,你只有30%的可能性回答正确。这就是逻辑回归能提供给你的信息。

从数学上看,在结果中,几率的对数使用的是预测变量的线性组合模型。

odds= p/ (1-p) = probability of event occurrence / probability of not event occurrenceln(odds) = ln(p/(1-p))logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk

在上面的式子里,p 是我们感兴趣的特征出现的概率。它选用使观察样本值的可能性最大化的值作为参数,而不是通过计算误差平方和的最小值(就如一般的回归分析用到的一样)。

现在你也许要问了,为什么我们要求出对数呢?简而言之,这种方法是复制一个阶梯函数的最佳方法之一。我本可以更详细地讲述,但那就违背本篇指南的主旨了。

Python代码

#Import Libraryfrom sklearn.linear_model import LogisticRegression#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset# Create logistic regression objectmodel = LogisticRegression()# Train the model using the training sets and check scoremodel.fit(X, y)model.score(X, y)#Equation coefficient and Interceptprint("Coefficient: n", model.coef_)print("Intercept: n", model.intercept_)#Predict Outputpredicted= model.predict(x_test)

更进一步:

你可以尝试更多的方法来改进这个模型:

加入交互项

精简模型特性

使用正则化方法

使用非线性模型

3、决策树

这是我最喜爱也是最频繁使用的算法之一。这个监督式学习算法通常被用于分类问题。令人惊奇的是,它同时适用于分类变量和连续因变量。在这个算法中,我们将总体分成两个或更多的同类群。这是根据最重要的属性或者自变量来分成尽可能不同的组别。想要知道更多,可以阅读:简化决策树 。

你可能感兴趣的:(机器算法有哪几种,python)