较为详细的记录总结TensorRT的python接口的使用,环境配置,模型转换和静态动态模型推理

先来一段摘抄自网上的TensorRT介绍:

TensorRT是英伟达针对自家平台做的加速包,TensorRT主要做了这么两件事情,来提升模型的运行速度。

  1. TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用 32 位或 16 位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。
  2. TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。现在大多数深度学习框架是没有针对GPU做过性能优化的,而英伟达,GPU的生产者和搬运工,自然就推出了针对自己GPU的加速工具TensorRT。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三次cuDNN对应的API,但实际上这三层的实现完全是可以合并到一起的,TensorRT会对一些可以合并网络进行合并。我们通过一个典型的inception block来看一看这样的合并运算。

TensorRT用来做模型的推理优化,也是有Python接口的,实际使用测试下来,python接口的模型推理速度C++基本差不多的。这里较为详细的记录TensorRT python接口从环境的配置到模型的转换,再到推理过程,还有模型的INT8量化,有时间的话也一并总结记录了,笔者使用的版本是TensorRT7.0版本,此版本支持模型动态尺寸的前向推理,下面也会分为静态推理和动态推理来介绍。

TensorRT环境的配置

tensorRT的配置是很简单的,官网注册,填调查问卷,就可以下载了,笔者用的是TensorRT-7.0.0.11.CentOS-7.6.x86_64-gnu.cuda-9.0.cudnn7.6.tar.gz版本,到存放目录直接解压,配置一下lib下各种编译好的包,还有很重要的cuda环境。

tar -zxvf TensorRT-7.0.0.11.CentOS-7.6.x86_64-gnu.cuda-9.0.cudnn7.6.tar.gz
sudo vim ~/.bashrc
#添加下面路径,注意改成自己的tensorRT的lib路径,cuda的路径
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/caidou/A/TensorRT-7.0.0.11/lib
export C_INCLUDE_PATH=/usr/local/cuda-9.0/include/:${C_INCLUDE_PATH}
export CPLUS_INCLUDE_PATH=/usr/local/cuda-9.0/include/:${CPLUS_INCLUDE_PATH}
#使其生效
source ~/.bashrc

然后pip安装解压后python 目录下的合适版本的python-tensorrt,pip安装pycuda。import成功就可以啦。

import tensorrt
import pycuda

TensorRT模型的转换

模型的转换主要有两种方式,一种是把pytorch或者keras等训练的模型先转换成ONNX模型,再用TensorRT直接解析ONNX模型;但是有时候这种方法转换tensorrt模型因为某些层的操作,或者转为ONNX时版本变化太多会生成trt模型失败,这时候可以用tensorrt自己的API去重写网络,转为trt模型。这里仅仅记录前者,分为静态尺寸出入的转换和动态尺寸出入,利用API转换官方教程也是有的。

转为动态尺寸的trt模型

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import common
import os
def build_engine(onnx_file_path,engine_file_path):
    """Takes an ONNX file and creates a TensorRT engine to run inference with"""
    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(common.EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28 # 256MiB
        builder.max_batch_size = 1
        config = builder.create_builder_config()
        config.max_workspace_size = common.GiB(6)
        profile = builder.create_optimization_profile()
        profile.set_shape("input_1_0", (1,100,100,3),(1,1024,1024,3), (1,2048,2048,3))
        idx = config.add_optimization_profile(profile)
        # Parse model file
        if not os.path.exists(onnx_file_path):
            print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
            exit(0)
        print('Loading ONNX file from path {}...'.format(onnx_file_path))
        with open(onnx_file_path, 'rb') as model:
            print('Beginning ONNX file parsing')
            if not parser.parse(model.read()):
                print ('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print (parser.get_error(error))
                return None
        print('Completed parsing of ONNX file')
        print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
        engine = builder.build_engine(network,config=config)
        print("Completed creating Engine")
        with open(engine_file_path, "wb") as f:
            f.write(engine.serialize())
        return engine
if __name__ =="__main__":
    onnx_path1 = '/home/caidou/project/trt_python/mode1_1_-1_-1_3.onnx'
    engine_path = '/home/caidou/trt_python/model_1_-1_-1_3.engine'
    build_engine(onnx_path1,engine_path)

其中的common是官方的。

转为静态的尺寸的trt模型

import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import common
import os
def build_engine(onnx_file_path,engine_file_path):
    """Takes an ONNX file and creates a TensorRT engine to run inference with"""
    TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
    with trt.Builder(TRT_LOGGER) as builder, builder.create_network(common.EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
        builder.max_workspace_size = 1 << 28 # 256MiB
        builder.max_batch_size = 1
        # Parse model file
        if not os.path.exists(onnx_file_path):
            print('ONNX file {} not found, please run yolov3_to_onnx.py first to generate it.'.format(onnx_file_path))
            exit(0)
        print('Loading ONNX file from path {}...'.format(onnx_file_path))
        with open(onnx_file_path, 'rb') as model:
            print('Beginning ONNX file parsing')
            if not parser.parse(model.read()):
                print ('ERROR: Failed to parse the ONNX file.')
                for error in range(parser.num_errors):
                    print (parser.get_error(error))
                return None
        print('Completed parsing of ONNX file')
        print('Building an engine from file {}; this may take a while...'.format(onnx_file_path))
        engine = builder.build_cuda_engine(network)
        print("Completed creating Engine")
        with open(engine_file_path, "wb") as f:
            f.write(engine.serialize())
        return engine
if __name__ =="__main__":
    onnx_path1 = '/home/caidou/project/trt_python/model4_256_256.onnx'
    engine_path = '/home/caidou/project/trt_python/model4_256_256.engine'
    build_engine(onnx_path1,engine_path)

就是不需要设置一下尺寸范围,还有一些其他设置。注意生成engine 时候的API,用错了会报错。

 TensorRT模型的推理

推理依旧分为动态尺寸的和固定尺寸的,动态推理这一块C++版本的资料比较多,python接口的比较少,固定尺寸的推理官方也有demo,分为异步同步推理,但是不知道为什么笔者实测下来速度区别很小。

python推理接收numpy格式的数据输入。

动态推断

import tensorrt as trt
import pycuda.driver as cuda
#import pycuda.driver as cuda2
import pycuda.autoinit
import numpy as np
import cv2
def load_engine(engine_path):
    #TRT_LOGGER = trt.Logger(trt.Logger.WARNING)  # INFO
    TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
    with open(engine_path, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
        return runtime.deserialize_cuda_engine(f.read())

path ='/home/caidou/trt_python/model_1_-1_-1_3.engine'
#这里不以某个具体模型做为推断例子.

# 1. 建立模型,构建上下文管理器
engine = load_engine(path)
context = engine.create_execution_context()
context.active_optimization_profile = 0

#2. 读取数据,数据处理为可以和网络结构输入对应起来的的shape,数据可增加预处理
imgpath = '/home/caidou/test/aaa.jpg'
image = cv2.imread(imgpath)
image = np.expand_dims(image, 0)  # Add batch dimension.  


#3.分配内存空间,并进行数据cpu到gpu的拷贝
#动态尺寸,每次都要set一下模型输入的shape,0代表的就是输入,输出根据具体的网络结构而定,可以是0,1,2,3...其中的某个头。
context.set_binding_shape(0, image.shape)
d_input = cuda.mem_alloc(image.nbytes)  #分配输入的内存。


output_shape = context.get_binding_shape(1) 
buffer = np.empty(output_shape, dtype=np.float32)
d_output = cuda.mem_alloc(buffer.nbytes)    #分配输出内存。
cuda.memcpy_htod(d_input,image)
bindings = [d_input ,d_output]

#4.进行推理,并将结果从gpu拷贝到cpu。
context.execute_v2(bindings)  #可异步和同步
cuda.memcpy_dtoh(buffer,d_output)  
output = buffer.reshape(output_shape)

#5.对推理结果进行后处理。这里只是举了一个简单例子,可以结合官方静态的yolov3案例完善。

整体的pipline就是上面的1-5.

静态推断

静态推断和动态推断差不多,只不过不需要每次都分配输入和输出的内存空间。

import tensorrt as trt
import pycuda.driver as cuda
#import pycuda.driver as cuda2
import pycuda.autoinit
import numpy as np
import cv2
path ='/home/caidou/trt_python/model_1_4_256_256.engine'
engine = load_engine(path)
imgpath = 'aaa.jpg'
context = engine.create_execution_context()
image1 = cv2.write(imgpath)
image1 = cv2.resize(image1,(256,256))
image2 = image1.copy()
image3 = image1.copy()
image4 = image1.copy()
image = np.concatenate((image1,image2,image3,image4))
image = image.reshape(-1,256,256)

# image = np.expand_dims(image, axis=1)
image = image.astype(np.float32)

image = image.ravel()#数据平铺
outshape= context.get_binding_shape(1) 
output = np.empty((outshape), dtype=np.float32)
d_input = cuda.mem_alloc(1 * image.size * image.dtype.itemsize)
d_output = cuda.mem_alloc(1*output.size * output.dtype.itemsize)
bindings = [int(d_input), int(d_output)]
stream = cuda.Stream()
for i in tqdm.tqdm(range(600)):
    cuda.memcpy_htod(d_input,image)
    context.execute_v2(bindings)
    cuda.memcpy_dtoh(output, d_output)

TensorRT模型的量化

待续...

这一块等有时间了再补充

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(模型框架学习,深度学习)