基于 RBF 神经网络进行非线性系统识别附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

个人主页:Matlab科研工作室

个人信条:格物致知。

⛄ 内容介绍

In this paper, we propose a novel adaptive kernel for the radial basis function neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed framework dynamically adapts the weights of the participating kernels using the gradient descent method, thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation, namely nonlinear system identification, patter classification and function approximation.

⛄ 部分代码

%% Nonlinear system identification using RBF Neural Networks

% Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7 

% https://link.springer.com/article/10.1007/s00034-016-0375-7

clc;

close all;

clear all;  

%% Initialization of the simulation parameters

len = 1000;     % Length of the signal 

runs = 10;      % Monte Carlo simulations

epochs = 100;   % Number of times same signal pass through the RBF 

learning_rate = 5e-4;   % step-size of Gradient Descent Algorithm

noise_var=1e-1;         % disturbance power / noise in desired outcome

h = [2 -0.5 -0.1 -0.7 3]; % system's coeffients

delays = 2;               % order/delay/No.of.Taps

⛄ 运行结果

基于 RBF 神经网络进行非线性系统识别附matlab代码_第1张图片

基于 RBF 神经网络进行非线性系统识别附matlab代码_第2张图片

⛄ 参考文献

基于 RBF 神经网络进行非线性系统识别附matlab代码_第3张图片

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除

❤️ 关注我领取海量matlab电子书和数学建模资料

你可能感兴趣的:(信号处理,matlab,神经网络,开发语言)