非线性模型预测控制-建模方法

1. 采用线性化方法
线性化方法是研究非线性系统的常规方法。将非线性系统局部线性化主要是为了沿用线性系统中已有的成果,计算简单,实时性好。对于非线性较强的系统,用单个线性化模型很难反映系统在大范围内的动、静态特性,控制品质甚至稳定性都难以保证。因此实际处理时,有以下三种线性化方法。
(1)将非线性机理模型在每个采样点附近线性化,然后对线性化的模型采用线性的预测控制算法,其特点是在每个采样时刻都采用新的模型,能尽量减小线性化带来的误差。但是频繁的在线更换模型会导致需要反复计算相关矩阵参数,计算量加大,且不利于离线对控制器的参数进行优化设计。
(2)多模型方法。顾名思义,就是引入区间近似的思想,用多个线性化的模型来描述同一个非线性的对象。多模型方法的优点在于可以离线的计算大部分控制参数,难点则是如何确定模型切换的时机以及保证模型切换时的平稳性。
(3)反馈线性化(即就是 I/O 扩展线性化)的方法,即对非线性系统引入非线性反馈补偿律,使非线性系统对虚拟控制输入量实现线性化,便可以使用线性的 MPC方法。也有许多非线性系统不满足反馈线性化的条件,使其应用受到限制。

2. 利用各种特殊模型
常用的非线性模型包括 volterra 模型、Hammerstein 模型、Wiener 模型等。volterra模型为非线性对象的广义脉冲响应模型,可以描述一类非线性对象的输入输出特性,实际应用中常采用正、负和双阶跃响应法建立系统的 volterra 模型。Hammerstein 模型和 Wiener 模型都是由一个非线性的静态子系统和一个线性的动态子系统串联而成,二者的区别是串联的顺序不同。
关于特殊模型较详细的信息可以参见我的另一篇博文:MPC中常用到的非线性模型

3. 基于神经网络的预测控制
神经网络以其分布式存储、并行处理、良好的鲁棒性、自适应性、自学习性,在控制界具有广阔的应用前景。由于神经网络能够以良好的精度逼近非线性函数,且基于神经网络的建模方法具有普遍性,因此在非线性预测控制中受到重视,相关的研究成果也比较多。
关于采用神经网络的预测控制,存在的困难也比较多,主要是还不能有效地进行多步预测,而通常来说多步预测的控制效果要明显优于单步预测。尽管将多个神经网络串联可以得到多步的输出预测,但这样会增加控制器的复杂程度,直接影响控制量的求解。同时,如果需要在线进行模型辨识,那么在线的网络训练需要较长的时间,控制的实时性变差。

你可能感兴趣的:(建模,控制算法)