Pytorch 基础——实现线性回归、逻辑回归和卷积神经网络

线性回归

1 步骤

  1. 构建一个类,叫做 LinearRegression
  2. 在这个类中定义模型
  3. 计算 MSE 均方误差损失函数
  4. 定义优化器
  5. 反向传播
  6. 预测

举个例子,我们有个汽车公司,如果车价格越低低,我们可以卖更多的车。

car_price_np = np.array([3,4,5,6,7,8,9], dtype=np.float32).reshape(-1,1)
car_price_tensor = Variable(torch.from_numpy(car_price_np))

number_of_car_sell_np = np.array([ 7.5, 7, 6.5, 6.0, 5.5, 5.0, 4.5], dtype=np.float32).reshape(-1,1)
number_of_car_sell_tensor = Variable(torch.from_numpy(number_of_car_sell_np))

2 定义线性回归

class LinearRegression(nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(input_size, output_size)

    def forward(self, x):
        return self.linear(x)

3 将网络实例化,定义一些参数

input_dim = 1
output_dim = 1
model = LinearRegression(input_dim, output_dim)
mse = nn.MSELoss()
lr = 0.02
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
loss_list = []
total_iter = 1001

4 拟合数据集

for iteration in range(total_iter):
    optimizer.zero_grad()
    results = model(car_price_tensor)
    loss = mse(results, number_of_car_sell_tensor)
    loss.backward()
    optimizer.step()
    loss_list.append(loss.data)

    if (iteration % 100 == 0):
        print("epoch {}, loss {}".format(iteration, loss.data))

逻辑回归

  • 线性回归对于分类任务表现不好
  • 可以使用逻辑回归进行分类
  • 逻辑回归=线性回归+logistic 函数(softmax)

逻辑回归的步骤,这里使用 MNIST 数据集:

  1. 准备数据集
    • 使用 Mnist
    • 数据需要归一化
    • 需要划分训练集和测试集
    • DataLoader 将 dataset 和 sampler 合并到一起
  2. 建立逻辑回归模型
    • 在 pytorch 中,逻辑回归函数是在损失函数中的
  3. 创建模型
  4. 创建损失函数:交叉熵损失函数,其中有包括 softmax
  5. 创建优化器
  6. 训练模型
  7. 预测

1 加载数据集

train = pd.read_csv("./train.csv", dtype=np.float32)

targets_numpy = train.label.values
features_numpy = train.loc[:, train.columns != "label"].values / 255

features_train, features_test, targets_train, targets_test = train_test_split(
    features_numpy, targets_numpy, test_size = 0.2, random_state = 42
)
featuresTrain = torch.from_numpy(features_train)
targetsTrain = torch.from_numpy(targets_train).type(torch.LongTensor)

featuresTest = torch.from_numpy(features_test)
targetsTest = torch.from_numpy(targets_test).type(torch.LongTensor)

train = torch.utils.data.TensorDataset(featuresTrain, targetsTrain)
test = torch.utils.data.TensorDataset(featuresTest, targetsTest)
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle = True)
test_loader = torch.utils.data.DataLoader(test, batch_size = batch_size, shuffle=False)

网络结构

网络结构其实线性回归一模一样,只有损失函数的区别

class LogisticRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        out = self.linear(x)
        return out

2 定义参数和优化器

batch_size = 100
n_iters = 10000
num_epochs = n_iters / (len(features_train) / batch_size)
num_epochs = int(num_epochs)
input_dim = 28 * 28
output_dim = 10

model = LogisticRegressionModel(input_dim, output_dim).cuda()
error = nn.CrossEntropyLoss().cuda()
learning_rate = 1e-3
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)

count = 0
loss_list = []
iteration_list = []

3 训练模型

# train the model
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):

        model.train()
        train = Variable(images.view(-1, 28 * 28)).cuda()
        labels = Variable(labels).cuda()

        optimizer.zero_grad()
        output = model(train)
        loss = error(output, labels)
        loss.backward()
        optimizer.step()

        count += 1

        if count % 50 == 0:
            model.eval()
            correct = 0
            total = 0
            
            for images, labels in test_loader:
                test = Variable(images.view(-1, 28 * 28)).cuda()
                output = model(test)
                predicted = torch.max(output.cpu().data, 1)[1]
                total += len(labels)

                correct += (predicted == labels).sum()
            accuracy = 100 * correct / float(total)

            loss_list.append(loss.data)
            iteration_list.append(count)
        if count % 500 == 0:
            print("Iteration: {:.4f}, Loss: {:.4f}, Accuracy: {:.2f}%".format(count, loss.cpu().data, accuracy))

训练完成后在验证集上的精度有 85%。

神经网络

  1. 当问题的变复杂时,逻辑回归的精度就会下降,因此需要提升模型的复杂度
  2. 需要在网络中增加一些非线性的函数
  3. 使用 pytorch 构建神经网络的步骤
    1. 导入库
    2. 准备数据集 Dataset 和 DataLoader
    3. 构建模型
    4. 实例化模型和损失函数,优化器
    5. 训练和预测

1 构建模型

class ANNModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(ANNModel, self).__init__()

        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.relu1 = nn.ReLU()

        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.tanh2 = nn.Tanh()

        self.fc3 = nn.Linear(hidden_dim, hidden_dim)
        self.elu3 = nn.ELU()

        self.fc4 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.relu1(self.fc1(x))
        x = self.tanh2(self.fc2(x))
        x = self.elu3(self.fc3(x))
        x = self.fc4(x)
        return x

2 实例化与参数

inpud_dim = 28 * 28
output_dim = 10
hidden_dim = 100
cuda = True
model = ANNModel(input_dim, hidden_dim, output_dim)

error = nn.CrossEntropyLoss()
if cuda:
    model = model.cuda()
    error = error.cuda()
lr = 1e-2
optimizer = torch.optim.SGD(model.parameters(), lr = lr)

count = 0
loss_list = []
iteration_list = []
accuracy_list = []

3 训练

# model training
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        model.train()
        train = Variable(images.view(-1, 28 * 28))
        labels = Variable(labels)
        if cuda:
            train = train.cuda()
            labels = labels.cuda()

        optimizer.zero_grad()
        outputs = model(train)
        loss = error(outputs, labels)
        loss.backward()
        optimizer.step()
        count += 1

        if count % 50 == 0:
            model.eval()
            correct = 0
            total = 0
            for images, labels in test_loader:
                test = Variable(images.view(-1, 28 * 28))
                if cuda:
                    test = test.cuda()
                outputs = model(test)
                predicted = torch.max(outputs.data, 1)[1]
                total += len(labels)
                correct += (predicted.cpu() == labels).sum()
            accuracy = 100 * correct / float(total)

            loss_list.append(loss.data)
            iteration_list.append(count)
            accuracy_list.append(accuracy)
            if count % 500 == 0:
                # Print Loss
                print('Iteration: {}  Loss: {:.4f}  Accuracy: {:.2f}%'.format(count, loss.data.item(), accuracy))

经过训练以后,在验证集上的精度达到了 95%,可见模型中的非线性是很重要的。

4 批归一化层

实测,在模型中加入批归一化层,可以加快模型的训练,并且得到效果更好的模型,将模型结构定义如下,最后达到了 97% 的精度。

class ANNModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(ANNModel, self).__init__()

        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.bn1 = nn.BatchNorm1d(hidden_dim)
        self.relu1 = nn.ReLU()

        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.bn2 = nn.BatchNorm1d(hidden_dim)
        self.tanh2 = nn.Tanh()

        self.fc3 = nn.Linear(hidden_dim, hidden_dim)
        self.bn3 = nn.BatchNorm1d(hidden_dim)
        self.elu3 = nn.ELU()

        self.fc4 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.relu1(self.bn1(self.fc1(x)))
        x = self.tanh2(self.bn2(self.fc2(x)))
        x = self.elu3(self.bn3(self.fc3(x)))
        x = self.fc4(x)
        return x

CNN

  • CNN 在图像分类上表现会很好
  • CNN 的步骤
    • 数据集
    • 卷积层
    • 池化层
    • Flattening:将特征图平铺,变成一个长向量
    • 全连接来做分类
  • 其余步骤与传统的网络一样

1 模型定义

加上了 BN 层可以让网络训练更快,且得到更好的结果

class CNNModel(nn.Module):
    def __init__(self):
        super(CNNModel, self).__init__()

        self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3,
                               stride=1)
        self.bn1 = nn.BatchNorm2d(16)
        self.relu1 = nn.ReLU()
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)

        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3,
                               stride=1)
        self.bn2 = nn.BatchNorm2d(32)
        self.relu2 = nn.ReLU()
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)

        self.fc = nn.Linear(32 * 5 * 5, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.maxpool1(x)
        
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.maxpool2(x)

        x = self.fc(x.view(x.shape[0], -1))
        return x

2 实例化与参数

model = CNNModel()
error = nn.CrossEntropyLoss()
if cuda:
    model = model.cuda()
    error = error.cuda()
lr = 1e-1
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
count = 0
loss_list = []
iteration_list = []
accuracy_list = []

3 模型训练

# model training
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        model.train()
        train = Variable(images.view(batch_size, 1, 28, 28))
        labels = Variable(labels)
        if cuda:
            train = train.cuda()
            labels = labels.cuda()

        optimizer.zero_grad()
        outputs = model(train)
        loss = error(outputs, labels)
        loss.backward()
        optimizer.step()
        count += 1

        if count % 50 == 0:
            model.eval()
            correct = 0
            total = 0
            for images, labels in test_loader:
                test = Variable(images.view(batch_size, 1, 28, 28))
                if cuda:
                    test = test.cuda()
                outputs = model(test)
                predicted = torch.max(outputs.data, 1)[1]
                total += len(labels)
                correct += (predicted.cpu() == labels).sum()
            accuracy = 100 * correct / float(total)

            loss_list.append(loss.data)
            iteration_list.append(count)
            accuracy_list.append(accuracy)
            if count % 500 == 0:
                # Print Loss
                print('Iteration: {}  Loss: {:.4f}  Accuracy: {:.2f}%'.format(count, loss.data.item(), accuracy))

通过卷积神经网络,可以达到 98.7% 的精度!

你可能感兴趣的:(卷积,神经网络)