import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=['val']
classes = ["airplane",
"airport",
"baseballfield",
"basketballcourt",
"bridge",
"chimney",
"dam",
"Expressway-Service-area",
"Expressway-toll-station",
"golfcourse",
"golffield",
"groundtrackfield",
"harbor",
"overpass",
"ship",
"stadium",
"storagetank",
"tenniscourt",
"trainstation",
"vehicle",
"windmill"]
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(image_id): # 转换这一张图片的坐标表示方式(格式),即读取xml文件的内容,计算后存放在txt文件中。
in_file = open('val/%s.xml'%(image_id))
out_file = open('./labels/val/%s.txt'%(image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
# difficult = obj.find('difficult').text
cls = obj.find('name').text
# if cls not in classes or int(difficult) == 1:
# continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('./labels/val/'):
os.makedirs('./labels/val/') # 新建一个 label 文件夹,用于存放yolo格式的标签文件:000001.txt
image_ids = open('/hy-nas/mydata/%s.txt'%(image_set)).read().strip().split() # 读取txt文件中 存放的图片的 id:000001hy-nas/mydata/xml/val.txt
list_file = open('%s.txt'%(image_set), 'w') # 新建一个 txt文件,用于存放 图片的绝对路径:/media/common/yzn_file/DataSetsH/VOC/VOCdevkit/VOC2007/JPEGImages/000001.jpg
for image_id in image_ids:
list_file.write('%s/%s.jpg\n'%(wd,image_id)) # 向 txt 文件中写入 一张图片的绝对路径
convert_annotation(image_id) # 转换这一张图片的坐标表示方式(格式)
list_file.close()
!!!
sets[]中的val改成train时,代码中的所有val都替换为train