基于遗传算法的线性规划问题求解matlab程序

基于遗传算法的线性规划问题求解matlab程序
1 遗传算法的主要步骤

(1)编码:将问题的候选解用染色体表示,实现解空间向编码空间的映射过程。遗传算法不直接处理解空间的决策变量,而是将其转换成由基因按一定结构组成的染色体。编码方式有很多,如二进制编码、实数向量编码、整数排列编码、通用数据结构编码等等。本文将采用二进制编码的方式,将十进制的变量转换成二进制,用0和1组成的数字串模拟染色体,可以很方便地实现基因交叉、变异等操作。
(2)种群初始化:产生代表问题可能潜在解集的一个初始群体(编码集合)。种群规模设定主要有以下方面的考虑:从群体多样性方面考虑,群体越大越好,避免陷入局部最优;从计算效率方面考虑,群体规模越大将导致计算量的增加。应该根据实际问题确定种群的规模。产生初始化种群的方法通常有两种:一是完全随机的方法产生;二是根据先验知识设定一组必须满足的条件,然后根据这些条件生成初始样本。
(3)计算个体适应度:利用适应度函数计算各个个体的适应度大小。适应度函数(Fitness Function)的选取直接影响到遗传算法的收敛速度以及能否找到最优解,因为在进化搜索中基本不利用外部信息,仅以适应度函数为依据,利用种群每个个体的适应程度来指导搜索。
(4)进化计算:通过选择、交叉、变异,产生出代表新的解集的群体。选择(selection):根据个体适应度大小,按照优胜劣汰的原则,淘汰不合理的个体;交叉(crossover):编码的交叉重组,类似于染色体的交叉重组;变异(mutation):编码按小概率扰动产生的变化,类似于基因突变。
(5)解码:末代种群中的最优个体经过解码实现从编码空间向解空间的映射,可以作为问题的近似最优解。这是整个遗传算法的最后一步,经过若干次的进化过程,种群中适应度最高的个体代表问题的最优解,但这个最优解还是一个由0和1组成的数字串,要将它转换成十进制才能供我们理解和使用。
基于遗传算法的线性规划问题求解matlab程序_第1张图片

2 线性规划算例
基于遗传算法的线性规划问题求解matlab程序_第2张图片
3 遗传算法求解结果

1)迭代曲线
基于遗传算法的线性规划问题求解matlab程序_第3张图片
2)求解答案
基于遗传算法的线性规划问题求解matlab程序_第4张图片
与算例答案相比,还存在一定误差。遗传算法与前面的粒子群与鲸鱼算法相比,求解效果更差。

4 matlab程序
1)主函数

clc;
clear;
close all

%% 基础参数
N = 2000;  %种群内个体数目
N_chrom = 3; %染色体节点数,也就是每个个体有多少条染色体,其实说白了就是看适应函数里有几个自变量。
iter = 500; %迭代次数,也就是一共有多少代
mut = 0.2;  %突变概率
acr = 0.2; %交叉概率
best = 1;
chrom_range = [0 0 0;15 15 15];%每个节点的值的区间
chrom = zeros(N, N_chrom);%存放染色体的矩阵
fitness = zeros(N, 1);%存放染色体的适应度
fitness_ave = zeros(1, iter);%存放每一代的平均适应度
fitness_best = zeros(1, iter);%存放每一代的最优适应度
chrom_best = zeros(1, N_chrom+1);%存放当前代的最优染色体与适应度


%% 初始化,这只是用于生成第一代个体,并计算其适应度函数
chrom = Initialize(N, N_chrom, chrom_range); %初始化染色体
fitness = CalFitness(chrom, N, N_chrom); %计算适应度
chrom_best = FindBest(chrom, fitness, N_chrom); %寻找最优染色体
fitness_best(1) = chrom_best(end); %将当前最优存入矩阵当中
fitness_ave(1) = CalAveFitness(fitness); %将当前平均适应度存入矩阵当中


%% 用于生成以下其余各代,一共迭代多少步就一共有多少代
for t = 2:iter
    chrom = MutChrom(chrom, mut, N, N_chrom, chrom_range, t, iter); %变异
    chrom = AcrChrom(chrom, acr, N, N_chrom); %交叉
    fitness = CalFitness(chrom, N, N_chrom); %计算适应度
    chrom_best_temp = FindBest(chrom, fitness, N_chrom); %寻找最优染色体
    if chrom_best_temp(end)>chrom_best(end) %替换掉当前储存的最优
        chrom_best = chrom_best_temp;
    end
    %%替换掉最劣
    [chrom, fitness] = ReplaceWorse(chrom, chrom_best, fitness);
    fitness_best(t) = chrom_best(end); %将当前最优存入矩阵当中
    fitness_ave(t) = CalAveFitness(fitness); %将当前平均适应度存入矩阵当中
plot(  -fitness_best(1:t), 'b')
grid on
legend( '最优适应度')
drawnow
end


%% 作图
figure(2)
plot(1:iter, fitness_ave, 'r', 1:iter, fitness_best, 'b')
grid on
legend('平均适应度', '最优适应度')
e=PlotModel(-chrom_best);


%% 输出结果
disp(['最优变量为', num2str(chrom_best(1:end-1))])
disp(['最优适应度为', num2str(-chrom_best(end))])
。。。。。。。。略

你可能感兴趣的:(遗传算法,求目标最优,线性规划,matlab,算法,矩阵)