- 分布式多卡训练(DDP)踩坑
m0_54804970
面试学习路线阿里巴巴分布式
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。单卡训练语句(正常运行):pythonmain.py多卡训练语句:需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE_DEVICES设置用的显卡编号,也可以不用,直接在main.py里面指定device也行,–nproc_pre_node每个节点的显卡数量。python-m
- 在 MacBook 上设置 DeepSeek R1 (8B) 的 3 个步骤
知识大胖
NVIDIAGPU和大语言模型开发教程deepseekollamaopenwebui
简介DeepSeek最近发布了R1模型,该模型在本地AI推理方面表现出色。如果您希望在MacBook上运行它,Ollama提供了一种无缝的方式来下载和管理模型。此外,使用Docker,您可以设置WebUI以方便地与其交互。本指南将引导您逐步完成启动和运行所有操作的过程。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《
- Torch安装必知
m0_52111823
人工智能
从硬件到Torch的支持链条如下Nvidia显卡Nvidia显卡驱动CudaTorchCudnncudnn对torch不是必需,部分项目会依赖cudnn。查看本机显卡版本型号,win+R,输入DxDiag,在显示或呈现栏包含显卡信息查看显卡版本与显卡驱动版本的兼容性,在https://www.nvidia.cn/geforce/drivers/,查看本机显卡支持的显卡驱动,根据搜索结果下载最新的N
- DeepSeek 开源周五个开源项目,引领 AI 创新?
LaughingZhu
开源人工智能产品运营前端经验分享
DeepSeek,作为一家领先的中国AI公司,最近在其五天开源周(2025年2月24日至28日)中发布了五个关键项目。这些项目涵盖了AI基础设施、模型训练和数据处理的各个方面,旨在通过透明和社区驱动的创新推动AI发展。这也解释了为什么DeepSeek可以用低成本训练出高质量的模型。Day1:FlashMLA项目介绍FlashMLA是一个为HopperGPU设计的高效解码内核,专门用于大型语言模型(
- 如何高效运行 DeepSeek-R1:分步指南
知识大胖
NVIDIAGPU和大语言模型开发教程deepseekjanusproollama
简介DeepSeek-R1是一个功能强大的开源AI模型,但要高效运行它,需要仔细的硬件选择、优化和部署策略。无论您想在Mac上本地运行它,还是在云GPU上运行它,还是优化性能以供大规模使用,本指南都会逐步引导您完成所有操作。推荐文章《如何在本地电脑上安装和使用DeepSeekR-1》权重1,DeepSeek《Nvidia系列之使用NVIDIAIsaacSim和ROS2的命令行控制您的机器人》权重1
- ModuleNotFoundError: No module named ‘tensorflow‘
赛博曹操
BUG题解pippycharm数据分析数据挖掘python
ModuleNotFoundError:Nomodulenamed‘tensorflow‘欢迎联系博主——这里是赛博曹操https://bbs.csdn.net/topics/619568415Anaconda安装TensorFlow之后,通过Jupyter运行,出现错误ImportError:Nomodulenamed‘tensorflow’.解决办法就一句:pipinstalltensorfl
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- 《AI大模型开发笔记》DeepSeek技术创新点
Richard Chijq
AI大模型开发笔记人工智能笔记
一、DeepSeek横空出世DeepSeekV3以颠覆性技术架构创新强势破局!革命性的上下文处理机制实现长文本推理成本断崖式下降,综合算力需求锐减90%,开启高效AI新纪元!最新开源的DeepSeekV3模型不仅以顶尖基准测试成绩比肩业界SOTA模型,更以惊人的训练效率引发行业震动——仅耗费280万H800GPU小时(对应4e24FLOP@40%MFU)即达成巅峰性能。对比同级别Llama3-40
- Vulkan:Vulkan与现代GPU架构_2024-07-20_17-11-33.Tex
chenjj4003
游戏开发架构java开发语言网络服务器linux前端
Vulkan:Vulkan与现代GPU架构Vulkan简介Vulkan的历史与发展Vulkan是一个跨平台的2D和3D图形应用程序接口(API),由KhronosGroup开发。Vulkan的设计旨在提供高性能的图形渲染,同时减少CPU的负载,允许开发者更直接地控制GPU的硬件资源。Vulkan的历史可以追溯到2012年,当时KhronosGroup开始规划一个全新的图形API,旨在解决OpenG
- 【弹性计算】弹性裸金属服务器和神龙虚拟化(二):适用场景
G皮T
#云计算弹性计算云计算云服务器阿里云裸金属服务器弹性裸金属服务器虚拟化
弹性裸金属服务器和神龙虚拟化(二):适用场景1.混合云和第三方虚拟化软件部署2.高隔离容器部署3.高质量计算服务4.高速低时延RDMA网络支持场景5.RISCCPU支持6.GPU性能无损输出公共云服务提供商推出弹性裸金属服务器,很显然是作为虚拟机云服务器的有效补充,而不是和自家虚拟机云服务器形成竞争关系。那么弹性裸金属服务器适合哪些场景呢?1.混合云和第三方虚拟化软件部署伴随着公共云的高速发展,通
- 深度学习框架之主流学习框架
uu1224
深度学习学习人工智能机器学习神经网络
深度学习框架是一类专门设计用来简化和加速神经网络模型开发过程的软件工具。它们提供了构建、训练和部署神经网络所需的各种功能和库。以下是一些主流的深度学习框架及其特点:TensorFlow:由Google开发,是一个广泛使用的开源深度学习框架。它以强大的图计算模型和分布式计算能力著称,并且通过高级API如Keras,为用户提供了易于上手的开发体验。PyTorch:由Facebook开发,以其动态计算图
- win11编译pytorchvision cuda128版本流程
System_sleep
pytorchpython编译windowscuda
1.前置条件本篇续接自win11编译pytorchcuda128版本流程,阅读前请先参考上一篇配置环境。访问https://kkgithub.com/pytorch/vision/archive/refs/tags/v0.21.0.tar.gz下载源码,下载后解压。2.编译打开MiniforgePrompt,依次执行如下代码:condaactivatetorch_build_envcondains
- 【模型部署】大模型部署工具对比:SGLang, Ollama, VLLM, LLaMA.cpp如何选择?
深度求索者
llama人工智能
在选择大模型部署工具时,需要考虑多个因素,包括性能、支持的语言和模型、硬件支持、易用性以及社区支持等。以下是对比分析:性能VLLM(VirtualTensorLanguage):VLLM是一个高性能的推理库,特别适用于长序列任务。它通过虚拟张量技术优化了内存使用,并支持多GPU加速,适合需要高性能推理的场景。LLaMA.cpp:这是一个针对C++优化的LLaMA模型实现,特别适合在资源受限的环境中
- ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float64: ‘Tensor(“loss/a
初识-CV
机器学习kerasKL散度相对熵intTensorFlowkeras
用keras以TensorFlow作为后端重写相对熵函数,报错。。。defKL(y_true,y_pred):weights=K.sum(K.cast(K.argmax(y_true,axis=1)*K.log(K.argmax(y_true,axis=1)/K.argmax(y_pred,axis=1)),dtype='float32'))returnweights*losses.categor
- 一文搞懂最新NVIDIA GPU满血版和阉割版芯片:A100、H100、A800、H800、H20的差异
神马行空
GPU芯片AI编程gpu算力
目录一、NVIDIAGPU架构1、Blackwell架构2、Hopper架构3、Ampere架构4、Turing架构5、Volta架构二、A100、H100、A800、H800、H20差异对比1.A100:数据中心AI计算的奠基石2.H100:性能提升的算力王者3.A800&H800:中国市场专供版4.H20:新一代受限算力GPU一、NVIDIAGPU架构1、Blackwell架构Blackwel
- Python vLLM 实战应用指南
ghostwritten
pythonpython开发语言
文章目录1.vLLM简介2.安装vLLM3.快速开始3.1加载模型并生成文本3.2参数说明4.实战应用场景4.1构建聊天机器人示例对话:4.2文本补全输出示例:4.3自定义模型服务启动服务调用服务5.性能优化5.1GPU加速5.2动态批处理6.总结vLLM是一种高性能的开源深度学习推理引擎,专注于高效的生成式模型推理任务。它通过动态批处理和内存优化技术大幅提高了大模型(如GPT系列)的推理性能,非
- 从零到一:利用DeepSeek构建高精度图像分类模型实战解析
一碗黄焖鸡三碗米饭
人工智能前沿与实践分类数据挖掘人工智能
引言:为什么选择DeepSeek进行图像分类?在计算机视觉领域,图像分类作为基础任务,其技术演进经历了从传统特征工程到深度学习的革命性转变。DeepSeek作为国产自研的深度学习框架,凭借其高效计算优化和灵活架构设计,在ImageNet等基准测试中展现出与PyTorch、TensorFlow等主流框架相媲美的性能。本文将手把手带您实现从零搭建工业级图像分类模型的全过程。一、DeepSeek技术架构
- DPU:数据中心与计算架构的革新引擎
wljslmz
网络技术DPU
你好,这里是网络技术联盟站,我是瑞哥。随着计算领域的蓬勃发展,数据处理单元(DPU)正崭露头角,成为重新定义数据中心和计算架构未来的关键元素。在这个数字化潮流中,DPU作为一种全新的数据处理方式,引领着计算技术的进步,为各行各业带来了前所未有的机遇。DPU的出现并非偶然,而是对日益增长的数据处理需求的有力回应。在传统计算架构中,中央处理单元(CPU)和图形处理单元(GPU)扮演着重要的角色,但随着
- 科技快讯 | DeepSeek宣布开源DeepGEMM;多个团队开发AI论文反识别技术;OpenAI GPT 4.5现身Android测试版,即将发布
最新科技快讯
科技
DeepSeek宣布开源DeepGEMM财联社2月26日电,Deepseek于开源周第三天宣布开源DeepGEMM。DeepGEMM是一个专为简洁高效的FP8通用矩阵乘法(GEMM)设计的库,具有细粒度缩放功能,如DeepSeek-V3中所提出。它支持普通和混合专家(MoE)分组的GEMM。该库采用CUDA编写,在安装过程中无需编译,通过使用轻量级的即时编译(JIT)模块在运行时编译所有内核。FP
- 云服务器部署DeepSeek Janus-Pro生成图片实战
deepseek
序本文主要研究一下如何在腾讯云HAI-GPU服务器上部署DeepSeekJanus-Pro来进行文本生成图片步骤选择带GPU的服务器到deepseek2025试用一下带GPU的服务器下载Janusgitclonehttps://github.com/deepseek-ai/Janus.git安装依赖cdJanuspipinstall-e.安装gradiopipinstallgradio安装torc
- 【学习】电脑上有多个GPU,命令行指定GPU进行训练。
超好的小白
学习人工智能深度学习
使用如下指令可以指定使用的GPU。CUDA_VISIBLE_DEVICES=1假设要使用第二个GPU进行训练。CUDA_VISIBLE_DEVICES=1pythontrain.py
- 程序员未来的出路:行业趋势与职业发展分析
guzhoumingyue
AIpython
随着技术的发展和行业需求的变化,程序员的职业出路也在不断演变。以下是程序员未来可能的职业发展方向及具体建议:一、技术深耕路线AI与机器学习专家趋势:AI技术在各行业的应用日益广泛,从自动驾驶到智能客服,需求持续增长。技能要求:Python、TensorFlow、PyTorch、数据挖掘、算法优化。发展路径:从机器学习工程师做起,积累项目经验。深入研究深度学习、强化学习等前沿技术。成为AI架构师或数
- k8s之pod的调度之污点与容忍污点,什么是污点? 如何容忍污点
终端行者
Kuberneteskubernetes容器云原生
在Kubernetes中,污点(Taint)和容忍(Toleration)是用于控制Pod调度到特定节点的重要机制。污点允许节点拒绝某些Pod的调度,而容忍则允许Pod忽略节点的污点,从而调度到特定节点上。1.污点(Taint)1.1.污点的作用污点是节点上的一个标记,用于限制哪些Pod可以调度到该节点。通常用于以下场景:专用节点:某些节点专门用于运行特定类型的Pod(如GPU节点)。节点维护:标
- 单卡挑战千亿模型!深度求索MoE架构实战指南:从理论到开源工具全解析
小诸葛IT课堂
架构
引言:为什么需要单GPU训练千亿参数模型?随着大模型参数规模突破千亿级别,训练成本与算力需求呈指数级增长。传统密集架构(DenseModel)在单卡训练中面临显存不足、计算效率低等问题。**混合专家模型(MixtureofExperts,MoE)**通过稀疏激活机制,成为突破单卡训练瓶颈的关键技术。本文将结合深度求索(DeepSeek)的MoE架构实战经验,详解如何用单个GPU训练千亿参数模型,并
- pip安装非标准版本号库报错 pip 24.1 will enforce this behaviour change.
m0_74397054
pippython机器学习神经网络
在做神经网络作业安装tensorflow报错pyodbc4.0.0-unsupportedhasanon-standardversionnumber.pip24.1willenforcethisbehaviourchange.Apossiblereplacementistoupgradetoanewerversionofpyodbcorcontacttheauthortosuggestthatth
- 苹果AI功能,GPU内存瓶颈,大气预测模型,Chrome内置Gemini
一支烟一朵花
人工智能ai业界资讯神经网络
智源社区刚刚!苹果发布AppleIntelligence,官宣免费接入ChatGPT,Siri迎来重磅更新大模型竞速赛鸣枪开跑后,苹果似乎已经脱离了第一梯队,曾经的行业风向标并没有像其他大厂那样频繁地宣讲AI,加之缺乏能够参与竞争的「明星产品」,其一度被贴上了「落后」的标签。但其实熟悉苹果的网友都知道,这是一家「重落地」的公司,更加擅长的是把创新技术工程化,实现「工程创新」。也正因如此,在生成式A
- Ubuntu+GPU+python编程环境
liwenkaitop
工程实践总结linuxpythonanacondatensorflow
本文安装之前,参考了如下链接的大体思路:https://blog.csdn.net/rogerchen1983/article/details/90272877不过中间还是遇到一些小问题,花了点时间都解决掉了。(1)Ubuntu系统这次安装Ubuntu的时候,最新版本是20.04,当然要安装最新的了,不过由于要对双系统作出分区安排,还是花了一些时间整理windows下的资料,腾出干净的空间出来。然
- window11和Ubuntu20.04安装Nvidia驱动和CUDA的正确方法
qq_29128985
linuxpython深度学习
零、双系统安装Win11Ubuntu20.04双系统安装解决ubuntu+win11双系统时间不一致问题Ubuntu:系统分区一、安装Nvidia驱动参考:Ubuntu20.04安装NVIDIA显卡驱动、CUDA、CUDNN及突破NVENC并发限制、多版本CUDA切换1、准备工作1)查看显卡型号lspci|grep-invidia2)禁用nouveau并重启(安装Nvidia显卡的官方驱动和系统自
- DeepSeek入门:安装与配置
梦落青云
deepseek
3.1系统要求硬件要求DeepSeek的硬件要求因模型版本而异,以下是不同版本的硬件要求:DeepSeek-R1-1.5B:CPU:最低4核(推荐Intel/AMD多核处理器)内存:8GB+硬盘:3GB+存储空间(模型文件约1.5-2GB)显卡:非必需(纯CPU推理),若GPU加速可选4GB+显存(如GTX1650)DeepSeek-R1-7B:CPU:8核以上(推荐现代多核CPU)内存:16GB
- DeepSeek 最新发布 DeepEP:一款用于 MoE 模型训练和推理的开源 EP 通信库
强哥之神
人工智能LLM机器学习LatentSpace语言模型deepseek
采用Mixture-of-Experts(MoE)架构的大型语言模型在没有相应计算量增加的情况下显著提升了模型容量。然而,这种方法也引入了一些挑战,尤其是在GPU之间的通信方面。在MoE模型中,对于任何给定的token,只有一部分专家是活跃的,因此在设备之间高效地交换数据至关重要。传统的全对全(all-to-all)通信方法可能会造成瓶颈,增加延迟,并导致GPU资源利用不足。在对延迟敏感的场景中,
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的