DropPath 类似于Dropout,不同的是 Drop将深度学习模型中的多分支结构随机 “失效”
而Dropout 是对神经元随机 “失效”
假设在前向传播中有如下的代码:
x = x + self.drop_path( self.conv(x) )
那么在drop_path分支中,每个batch有drop_prob的概率样本在 self.conv(x) 不会 “执行”,会以0直接传递。
若x为输入的张量,其通道为[B,C,H,W],那么drop_path的含义为在一个Batch_size中,随机有drop_prob的样本,不经过主干,而直接由分支进行恒等映射。
⚠️注意:Drop Path不能直接这样使用:
x = self.drop_path(x)
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None, scale_by_keep=True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
torch.bernoulli(input, *, generator=None, out=None)
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737, 0.0950, 0.3609],
[ 0.7148, 0.0289, 0.2676],
[ 0.9456, 0.8937, 0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1., 0., 0.],
[ 0., 0., 0.],
[ 1., 1., 1.]])
从伯努利分布中提取二进制随机数(0或1)。
输入张量应该是一个包含用于绘制二进制随机数的概率的张量。因此,输入中的所有值必须在以下范围内: 0 ≤ i n p u t i ≤ 1 0≤input_i≤1 0≤inputi≤1
o u t i ∼ B e r n o u l l i ( p = i n p u t i ) \mathrm{out_i ∼Bernoulli}( p= \mathrm{input_i} ) outi∼Bernoulli(p=inputi)
The returned out tensor only has values 0 or 1 and is of the same shape as input.
out can have integral dtype, but input must have floating point dtype
用均匀分布中提取的值填充输入张量 U ( a , b ) U(a,b) U(a,b)
torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
>>> a = torch.empty(3, 3)
>>> a
tensor([[0.0000e+00, 1.5846e+29, 0.0000e+00],
[1.5846e+29, 9.8091e-45, 0.0000e+00],
[0.0000e+00, 0.0000e+00, 0.0000e+00]])
>>> a.uniform_(0,1)
tensor([[0.0876, 0.5072, 0.4613],
[0.7696, 0.4485, 0.1128],
[0.2512, 0.8060, 0.6595]])
>>> a.bernoulli_()
tensor([[1., 1., 1.],
[1., 0., 0.],
[1., 0., 0.]])
将输入的每个元素除以另一个元素的对应元素。
torch.div(input, other, *, rounding_mode=None, out=None)
>>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637])
>>> torch.div(x, 0.5) # 相当于 x 中每个元素都除以 0.5
tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274])
>>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
... [ 0.1815, -1.0111, 0.9805, -1.5923],
... [ 0.1062, 1.4581, 0.7759, -1.2344],
... [-0.1830, -0.0313, 1.1908, -1.4757]])
>>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308])
>>> torch.div(a, b) # a的每行元素除以b的对应元素
tensor([[-0.4620, -6.6051, 0.5676, 1.2639],
[ 0.2260, -3.4509, -1.2086, 6.8990],
[ 0.1322, 4.9764, -0.9564, 5.3484],
[-0.2278, -0.1068, -1.4678, 6.3938]])
o u t i = i n p u t i o t h e r i out_i = \frac{input_i}{other_i} outi=otheriinputi