EDA

EDA 数据探索性分析

以下内容主要来自天池比赛的论坛,https://tianchi.aliyun.com/notebook-ai/home#notebookLabId=85457¬ebookType=PRIVATE&isHelp=false&operaType=5

EDA目标

  • EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。

  • 当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。

  • 引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。

  • 完成对于数据的探索性分析,并对于数据进行一些图表或者文字总结并打卡。

内容介绍

  1. 载入各种数据科学以及可视化库:
    • 数据科学库 pandas、numpy、scipy;
    • 可视化库 matplotlib、seabon;
    • 其他;
  2. 载入数据:
    • 载入训练集和测试集;
    • 简略观察数据(head()+shape);
  3. 数据总览:
    • 通过describe()来熟悉数据的相关统计量
    • 通过info()来熟悉数据类型
  4. 判断数据缺失和异常
    • 查看每列的存在nan情况
    • 异常值检测
  5. 了解预测值的分布
    • 总体分布概况(无界约翰逊分布等)
    • 查看skewness and kurtosis
    • 查看预测值的具体频数
  6. 特征分为类别特征和数字特征,并对类别特征查看unique分布
  7. 数字特征分析
    • 相关性分析
    • 查看几个特征得 偏度和峰值
    • 每个数字特征得分布可视化
    • 数字特征相互之间的关系可视化
    • 多变量互相回归关系可视化
  8. 类型特征分析
    • unique分布
    • 类别特征箱形图可视化
    • 类别特征的小提琴图可视化
    • 类别特征的柱形图可视化类别
    • 特征的每个类别频数可视化(count_plot)
  9. 用pandas_profiling生成数据报告

代码示例

1,2 载入可视化需要的包和数据

加载数据后,配合题目中的数据说明,简略观察数据(head()+shape),大致了解有哪些特征
Train_data.head().append(Train_data.tail())#前5行和后5行
Train_data.shape

3 总览数据概况

  1. describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断,比如有的时候会发现999 9999 -1 等值这些其实都是nan的另外一种表达方式,有的时候需要注意下
  2. info 通过info来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常
  1. 通过describe()来熟悉数据的相关统计量
    Train_data.describe()
  2. 通过info()来熟悉数据类型
    Train_data.info()

2.3.4 判断数据缺失和异常

  1. 查看每列的存在nan情况
    Train_data.isnull().sum()
    nan可视化
    missing = Train_data.isnull().sum()
    missing = missing[missing > 0]
    missing.sort_values(inplace=True)
    missing.plot.bar()
    通过以上两句可以很直观的了解哪些列存在 “nan”, 并可以把nan的个数打印,主要的目的在于 nan存在的个数是否真的很大,如果很小一般选择填充,如果使用lgb等树模型可以直接空缺,让树自己去优化,但如果nan存在的过多、可以考虑删掉
    可视化看下缺省值
    msno.matrix(Train_data.sample(250))
    msno.bar(Train_data.sample(1000))
  2. 查看异常值检测
    Train_data.info()
    可以发现除了notRepairedDamage 为object类型其他都为数字 这里我们把他的几个不同的值都进行显示就知道了
    Train_data[‘notRepairedDamage’].replace(’-’, np.nan, inplace=True)
    可以看出来‘ - ’也为空缺值,因为很多模型对nan有直接的处理,这里我们先不做处理,先替换成nan
    Train_data[‘notRepairedDamage’].replace(’-’, np.nan, inplace=True)
    Train_data[‘notRepairedDamage’].value_counts()
    Train_data.isnull().sum()

5 了解预测值的分布

Train_data[‘price’].value_counts()

  1. 总体分布概况(无界约翰逊分布等)
    import scipy.stats as st
    y = Train_data[‘price’]
    plt.figure(1); plt.title(‘Johnson SU’)
    sns.distplot(y, kde=False, fit=st.johnsonsu)
    plt.figure(2); plt.title(‘Normal’)
    sns.distplot(y, kde=False, fit=st.norm)
    plt.figure(3); plt.title(‘Log Normal’)
    sns.distplot(y, kde=False, fit=st.lognorm)
  2. 查看skewness and kurtosis
    sns.distplot(Train_data[‘price’]);
    print(“Skewness: %f” % Train_data[‘price’].skew())
    print(“Kurtosis: %f” % Train_data[‘price’].kurt())
    Train_data.skew(), Train_data.kurt()
    skew、kurt说明参考https://www.cnblogs.com/wyy1480/p/10474046.html
  3. 查看预测值的具体频数
    plt.hist(Train_data[‘price’], orientation = ‘vertical’,histtype = ‘bar’, color =‘red’)
    plt.show()
    查看频数, 大于20000得值极少,其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉,再前面进行
    log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
    plt.hist(np.log(Train_data[‘price’]), orientation = ‘vertical’,histtype = ‘bar’, color =‘red’)
    plt.show()

6 特征分为类别特征和数字特征,并对类别特征查看unique分布

分离label即预测值
Y_train = Train_data[‘price’]
这个区别方式适用于没有直接label coding的数据
这里不适用,需要人为根据实际含义来区分
数字特征
numeric_features = Train_data.select_dtypes(include=[np.number])
numeric_features.columns
#类型特征
categorical_features = Train_data.select_dtypes(include=[np.object])
categorical_features.columns
特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + “的特征分布如下:”)
print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
print(Train_data[cat_fea].value_counts())
特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + “的特征分布如下:”)
print("{}特征有个{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
print(Test_data[cat_fea].value_counts())

7 数字特征分析

  1. 相关性分析
    price_numeric = Train_data[numeric_features]
    correlation = price_numeric.corr()
    print(correlation[‘price’].sort_values(ascending = False),’\n’)
    f , ax = plt.subplots(figsize = (7, 7))
    plt.title(‘Correlation of Numeric Features with Price’,y=1,size=16)
    sns.heatmap(correlation,square = True, vmax=0.8)
  2. 查看几个特征得 偏度和峰值
    for col in numeric_features:
    print(’{:15}’.format(col),
    ‘Skewness: {:05.2f}’.format(Train_data[col].skew()) ,
    ’ ’ ,
    ‘Kurtosis: {:06.2f}’.format(Train_data[col].kurt())
  3. 每个数字特征得分布可视化
    f = pd.melt(Train_data, value_vars=numeric_features)
    g = sns.FacetGrid(f, col=“variable”, col_wrap=2, sharex=False, sharey=False)
    g = g.map(sns.distplot, “value”)
  4. 数字特征相互之间的关系可视化
    sns.set()
    columns = [‘price’, ‘v_12’, ‘v_8’ , ‘v_0’, ‘power’, ‘v_5’, ‘v_2’, ‘v_6’, ‘v_1’, ‘v_14’]
    sns.pairplot(Train_data[columns],size = 2 ,kind =‘scatter’,diag_kind=‘kde’)
    plt.show()
    此处是多变量之间的关系可视化,可视化更多学习可参考很不错的文章 https://www.jianshu.com/p/6e18d21a4cad
  5. 多变量互相回归关系可视化
    fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))

[‘v_12’, ‘v_8’ , ‘v_0’, ‘power’, ‘v_5’, ‘v_2’, ‘v_6’, ‘v_1’, ‘v_14’]

v_12_scatter_plot = pd.concat([Y_train,Train_data[‘v_12’]],axis = 1)
sns.regplot(x=‘v_12’,y = ‘price’, data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)

v_8_scatter_plot = pd.concat([Y_train,Train_data[‘v_8’]],axis = 1)
sns.regplot(x=‘v_8’,y = ‘price’,data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)

v_0_scatter_plot = pd.concat([Y_train,Train_data[‘v_0’]],axis = 1)
sns.regplot(x=‘v_0’,y = ‘price’,data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)

power_scatter_plot = pd.concat([Y_train,Train_data[‘power’]],axis = 1)
sns.regplot(x=‘power’,y = ‘price’,data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)

v_5_scatter_plot = pd.concat([Y_train,Train_data[‘v_5’]],axis = 1)
sns.regplot(x=‘v_5’,y = ‘price’,data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)

v_2_scatter_plot = pd.concat([Y_train,Train_data[‘v_2’]],axis = 1)
sns.regplot(x=‘v_2’,y = ‘price’,data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)

v_6_scatter_plot = pd.concat([Y_train,Train_data[‘v_6’]],axis = 1)
sns.regplot(x=‘v_6’,y = ‘price’,data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)

v_1_scatter_plot = pd.concat([Y_train,Train_data[‘v_1’]],axis = 1)
sns.regplot(x=‘v_1’,y = ‘price’,data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)

v_14_scatter_plot = pd.concat([Y_train,Train_data[‘v_14’]],axis = 1)
sns.regplot(x=‘v_14’,y = ‘price’,data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)

v_13_scatter_plot = pd.concat([Y_train,Train_data[‘v_13’]],axis = 1)
sns.regplot(x=‘v_13’,y = ‘price’,data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

8 类别特征分析

  1. unique分布
    for fea in categorical_features:
    print(Train_data[fea].nunique())

  2. 类别特征箱形图可视化

#因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = [‘model’,
‘brand’,
‘bodyType’,
‘fuelType’,
‘gearbox’,
‘notRepairedDamage’]
for c in categorical_features:
Train_data[c] = Train_data[c].astype(‘category’)
if Train_data[c].isnull().any():
Train_data[c] = Train_data[c].cat.add_categories([‘MISSING’])
Train_data[c] = Train_data[c].fillna(‘MISSING’)

def boxplot(x, y, **kwargs):
sns.boxplot(x=x, y=y)
x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=[‘price’], value_vars=categorical_features)
g = sns.FacetGrid(f, col=“variable”, col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, “value”, “price”)
3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = ‘price’
for catg in catg_list :
sns.violinplot(x=catg, y=target, data=Train_data)
plt.show()
4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
sns.barplot(x=x, y=y)
x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=[‘price’], value_vars=categorical_features)
g = sns.FacetGrid(f, col=“variable”, col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, “value”, “price”)
5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x, **kwargs):
sns.countplot(x=x)
x=plt.xticks(rotation=90)

f = pd.melt(Train_data, value_vars=categorical_features)
g = sns.FacetGrid(f, col=“variable”, col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, “value”)

9 用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")

你可能感兴趣的:(记录,python,数据分析)