《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)

目录

4.反向传播


4.反向传播

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第1张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第2张图片

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第3张图片

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第4张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第5张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第6张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第7张图片

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第8张图片

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第9张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第10张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第11张图片

#! /usr/bin/env python
# -*- coding: utf-8 -*-

'''
============================================
时间:2021.8.13
作者:手可摘星辰不去高声语
文件名:04-PyTorch梯度下降法.py
功能:
1、Ctrl + Enter      在下方新建行但不移动光标;
2、Shift + Enter     在下方新建行并移到新行行首;
3、Shift + Enter     任意位置换行
4、Ctrl + D          向下复制当前行
5、Ctrl + Y         删除当前行
6、Ctrl + Shift + V  打开剪切板
7、Ctrl + /          注释(取消注释)选择的行;
8、Ctrl + E       可打开最近访问过的文件
9、Double Shift + /  万能搜索
============================================
'''

import matplotlib.pyplot as plt
import torch

# 准备训练集
x_data = [0.9, 1.8, 4.1]
y_data = [2.9, 6.1, 9.2]


def forward(x_train, w_train):
    return x_train * w_train


def loss(x_train, y_train, w_train):
    y_pred = forward(x_train, w_train)
    return (y_pred - y_train) ** 2


if __name__ == '__main__':
    loss_list = []
    epoch_list = []
    rate = 0.001
    w = torch.Tensor([10.0])
    w.requires_grad = True

    for epoch in range(100):
        for x, y in zip(x_data, y_data):
            l = loss(x, y, w)
            l.backward()
            print('\tgrad:', x, y, w.grad.item())
            w.data = w.data - rate * w.grad.data
            w.grad.data.zero_()

        epoch_list.append(epoch)
        loss_list.append(l.item())
        print('progress:', epoch, l.item())

    plt.plot(epoch_list, loss_list)
    plt.title("rate = {}".format(rate))
    plt.xlabel("Epoch")
    plt.ylabel("MSE")
    plt.grid()
    plt.show()

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第12张图片

作业: 

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第13张图片

#! /usr/bin/env python
# -*- coding: utf-8 -*-

'''
============================================
时间:2021.8.14
作者:手可摘星辰不去高声语
文件名:04-PyTorch梯度下降法2.py
功能:梯度下降法求 y = x*x + x*2 + 1的参数
1、Ctrl + Enter      在下方新建行但不移动光标;
2、Shift + Enter     在下方新建行并移到新行行首;
3、Shift + Enter     任意位置换行
4、Ctrl + D          向下复制当前行
5、Ctrl + Y         删除当前行
6、Ctrl + Shift + V  打开剪切板
7、Ctrl + /          注释(取消注释)选择的行;
8、Ctrl + E       可打开最近访问过的文件
9、Double Shift + /  万能搜索
============================================
'''


import matplotlib.pyplot as plt
import torch

# 准备训练集
# 假设的二次函数为 y = x*x + x*2 + 1
# 对于该函数,w1 = 1, w2 = 2, b=1
x_data = [0, 1, 2, 3, 4]
y_data = [1.001, 3.998, 9.002, 15.999, 25.001]


def forward(x_train, w1_train, w2_train, b_train):
    return w1_train*(x_train**2) + w2_train*x_train + b_train


def loss(x_train, y_train, w1_train, w2_train, b_train):
    y_pred = forward(x_train, w1_train, w2_train, b_train)
    return (y_pred - y_train) ** 2


if __name__ == '__main__':
    loss_list = []
    epoch_list = []
    rate = 0.0000005
    b = torch.Tensor([1.0])
    w1 = torch.Tensor([1.0])
    w2 = torch.Tensor([1.0])
    global w1_pro
    global w2_pro
    global b_pro
    w1.requires_grad = True
    w2.requires_grad = True
    b.requires_grad = True

    for epoch in range(10000):
        for x, y in zip(x_data, y_data):
            l = loss(x, y, w1, w2, b)
            l.backward()
            print('\tgrad:', x, y, w1.grad.item(), w2.grad.item(), b.grad.item())

            w1.data = w1.data - rate * w1.grad.data
            w2.data = w2.data - rate * w2.grad.data
            b.data = b.data - rate * b.grad.data

            w1_pro = w1.data
            w2_pro = w2.data
            b_pro = b.data

            w1.grad.data.zero_()
            w2.grad.data.zero_()
            b.grad.data.zero_()

        epoch_list.append(epoch)
        loss_list.append(l.item())
        print('Progress:', epoch
              , " loss:", l.item()
              , " w1:", w1_pro.data
              , " w2:", w2_pro.data
              , "b:", b_pro.data)

    plt.plot(epoch_list, loss_list)
    plt.title("rate = {}".format(rate))
    plt.xlabel("Epoch")
    plt.ylabel("MSE")
    plt.grid()
    plt.show()

《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第14张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第15张图片

 《PyTorch深度学习实践》完结合集 · Hongpu Liu · PyTorch梯度下降法(2)_第16张图片

 

希望能够解答!!!谢谢✍

你可能感兴趣的:(PyTorch)