1.需要安装他的依赖包
2.搭配使用的torch版本>=1.8.1,最好直接安装torch==1.10.1
3.需要将依赖包直接下载到本地(GitHub - pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch
)点击进入here的位置
注意依赖包需要对应版本的python以及torch
4.安装时直接pip install "依赖项的完整路径"
5.最后pip install torch-geometric
GitHub - pyg-team/pytorch_geometric: Graph Neural Network Library for PyTorch
from torch_geometric.datasets import KarateClub
dataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')
##结果如下
Dataset: KarateClub():
======================
Number of graphs: 1
Number of features: 34
Number of classes: 4
查看该数据第一张图(一共一张图)的信息
data = dataset[0] # Get the first graph object.
print(data)
##结果如下
Data(x=[34, 34], edge_index=[2, 156], y=[34], train_mask=[34])
edge_index = data.edge_index
print(edge_index.t())
#结果如下
tensor([[ 0, 1],
[ 0, 2],
[ 0, 3],
[ 0, 4],
[ 0, 5],
[ 0, 6],
[ 0, 7],
[ 0, 8],
...
from torch_geometric.utils import to_networkx
G = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConv
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
torch.manual_seed(1234)
self.conv1 = GCNConv(dataset.num_features, 4) # 只需定义好输入特征和输出特征即可
self.conv2 = GCNConv(4, 4)
self.conv3 = GCNConv(4, 2)
self.classifier = Linear(2, dataset.num_classes)
def forward(self, x, edge_index):
h = self.conv1(x, edge_index) # 输入特征与邻接矩阵(注意格式,上面那种)
h = h.tanh()
h = self.conv2(h, edge_index)
h = h.tanh()
h = self.conv3(h, edge_index)
h = h.tanh()
# 分类层
out = self.classifier(h)
return out, h
model = GCN()
print(model)
#结果如下
GCN(
(conv1): GCNConv(34, 4)
(conv2): GCNConv(4, 4)
(conv3): GCNConv(4, 2)
(classifier): Linear(in_features=2, out_features=4, bias=True)
)
import time
model = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.
def train(data):
optimizer.zero_grad()
out, h = model(data.x, data.edge_index) #h是两维向量,主要是为了咱们画个图
loss = criterion(out[data.train_mask], data.y[data.train_mask]) # semi-supervised
loss.backward()
optimizer.step()
return loss, h
for epoch in range(401):
loss, h = train(data)
if epoch % 10 == 0:
visualize_embedding(h, color=data.y, epoch=epoch, loss=loss)
time.sleep(0.3)
本文参考链接