- 预训练模型微调与下游任务迁移学习技术
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习技术近年来在计算机视觉、自然语言处理等领域取得了飞速发展,这离不开大规模预训练模型的贡献。预训练模型通过在海量数据上的自监督学习,学习到了丰富的特征表示,为下游任务提供了强大的初始化。而对预训练模型进行有效的微调,可以充分利用预训练知识,在有限数据上快速达到出色的性能。此外,迁移学习技术也为模型在不同任务间的知识复用提供了有效途径。本文将详细介绍预训练模型微调与下游任务迁移学习
- 什么是预训练语言模型下游任务?
衣衣困
语言模型人工智能自然语言处理
问题:Word2Vec模型是预训练模型吗?由于训练的特性,word2Vec模型一定是与训练模型。给定一个词先使用独热编码然后使用预训练好的Q矩阵得到这个词的词向量。这里指的是词向量本身就是预训练的语言模型。什么是下游任务?在自然语言处理(NLP)和机器学习领域,下游任务(downstreamtasks)指的是使用已经训练好的模型或表示(如词向量、预训练的模型等)来解决的具体任务。这些任务通常依赖于
- AI辅助的企业估值报告生成器
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能ai
AI辅助的企业估值报告生成器关键词AI辅助估值企业估值报告数据处理机器学习算法报告生成器摘要本文将探讨如何利用人工智能技术辅助企业估值报告的生成。通过分析估值报告的重要性、AI技术在估值报告中的应用场景、估值模型与数据处理方法,以及机器学习算法在估值中的应用,本文旨在为企业和投资者提供一个高效、准确、可视化的估值报告生成解决方案。同时,本文还将介绍一个估值报告生成器的实现过程,并通过实际案例进行分
- 大模型推理速度测评的实战代码
herosunly
大模型推理速度人工智能实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 今天给大家带来的文章是大模型推理速度测评的实战代码,希望能对学习大模型的同学们有所帮助
- Windows逆向工程入门之MASM 选择结构
0xCC说逆向
windows汇编安全逆向病毒
公开视频->链接点击跳转公开课程博客首页->链接点击跳转博客主页目录一、标志寄存器1.1核心标志位功能详解二、条件跳转指令系统分类2.1无符号数跳转指令集2.2有符号数跳转指令集2.3特殊检测指令三、MASM高级语法解析3.1结构化伪指令转换机制3.2复杂条件表达式处理四、逆向工程实战技巧4.1控制流还原方法论一、标志寄存器1.1核心标志位功能详解标志位名称触发场景逆向工程意义CF进位标志无符号运
- Linux----进程间的通信
weixin_51790712
linux运维服务器
进程间通信之信号:信号--软中断中断信号---中断源中断(信号)处理程序---负责对该中断(信号)做出反应的//信号处理函数的注册函数#includetypedefvoid(*sighandler_t)(int);sighandler_tsignal(intsignum,sighandler_thandler);功能:给signum信号设置一个信号处理函数参数:@signum要处理的信号@hand
- 深入探索Python机器学习算法:模型评估
数据攻城小狮子
Python机器学习python机器学习算法sklearn人工智能
深入探索Python机器学习算法:模型评估文章目录深入探索Python机器学习算法:模型评估模型评估1.数据集划分1.1划分原则和方法1.2交叉验证技术1.3不同数据集划分方法的适用性2.评估指标分析2.1分类任务评估指标2.2回归任务评估指标2.3不同评估指标的选择和比较3.模型评估的注意事项3.1避免数据泄露问题3.2评估指标的稳定性和可靠性模型评估1.数据集划分1.1划分原则和方法在机器学习
- 2023年上海市浦东新区网络安全管理员决赛理论题样题
afei00123
网络安全&云安全考证狂魔web安全安全网络安全阿里云
目录一、判断题二、单选题三、多选题一、判断题1.等保1.0至等保2.0从信息系统拓展为网络和信息系统。正确(1)保护对象改变等保1.0保护的对象是信息系统,等保2.0增加为网络和信息系统,增加了云计算、大数据、工业控制系统、物联网、移动物联技术、网络基础设施等保护对象,实现了全方面的覆盖。其实不管保护对象如何变化,都需对要求部分进行全面的安全测评。(2)分类结构统一等保2.0实现基本、设计、测评要
- 微调(Fine-tuning)
路野yue
人工智能深度学习
微调(Fine-tuning)是自然语言处理(NLP)和深度学习中的一种常见技术,用于将预训练模型(Pre-trainedModel)适配到特定任务上。它的核心思想是:在预训练模型的基础上,通过少量任务相关的数据进一步训练模型,使其更好地适应目标任务。1.微调的核心思想预训练模型:像BERT、GPT这样的模型,已经在大量通用文本数据上进行了预训练,学习到了丰富的语言知识(如语法、语义、上下文关系等
- 多层感知机 (Multilayer Perceptron, MLP)
ALGORITHM LOL
人工智能机器学习算法
多层感知机(MultilayerPerceptron,MLP)通俗易懂算法多层感知机(MultilayerPerceptron,MLP)是一种前馈人工神经网络。它的主要特点是由多层神经元(或节点)组成,包括至少一个隐藏层。MLP是监督学习的模型,常用于分类和回归问题。组成部分输入层(InputLayer):接收输入数据的特征。例如,如果我们有一个特征向量x=[x1,x2,…,xn]\mathbf{
- 基于springboot+vue在线小说阅读平台系统(源码+lw+部署文档+讲解等)
QQ3295391197
Java毕业设计项目springbootvue.js后端
前言博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌主要内容:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。精彩专栏推荐订
- 项目开发实录(一):基于RDK X5的智能垃圾分类垃圾桶
一团乱毛线�
RDKX5地瓜机器人分类人工智能
文章目录项目简介硬件及材料列表整体架构流程技术细节后续开发安排-----------------------------分割线----------------------------------项目简介基于RDKX5开发板的智能垃圾分类垃圾桶项目,旨在利用人工智能技术实现垃圾的自动识别与分类。垃圾桶硬件装置应实现对行人投入垃圾的四分类投放(可回收垃圾、有害垃圾、厨余垃圾、其他垃圾)。该系统主要由摄
- week1-一周笔记及知识点补充:容器、迭代器、滑动窗口、sort()
普罗格瑞木
笔记c++算法
文章目录前言一、总概括二、不熟悉的知识点补充1.容器相关1.1类模板1.2容器类模板和容器类1.3常见容器分类1.4容器类的典型使用场景1.5容器类使用的性能优化技巧1.6容器适配器及使用方法1.7复杂容器1.8其他使用过未提及的容器的成员函数1.9容器内插入、删除的优化建议2.迭代器基本概念3.滑动窗口3.1核心思想3.2典型场景3.3关键技巧4.sort()函数4.1原型与参数4.2其他相关排
- 集成化信息化信号采集处理系统 一体化生物医学信号采集系统 机能集成化信号采集与处理系统
minhong1001
其他
实验平台技术指标:(MHO561-6O623O7)1.1、整机外形尺寸:1500(±20)mm×740(±10)mm×2100mm(±20)(长*宽*高);1.2、实验台操作面积:1220(±10)mm×740(±10)mm(长*宽);1.3、实验台面离地高度:两侧各830-850mm;1.4、输液架离台面高度:1000-1200mm;1.5、输液架移动范围:两侧各600mm;1.6、实验台制造工
- 清单(Manifest)——Adaptive AUTOSAR模型配置规范
aFakeProgramer
APAUTOSAR#APAUTOSAR新标准解读系列AUTOSAR
在智能汽车软件开发中,AUTOSAR自适应平台(AP)如同汽车的“数字神经系统”,而**清单(Manifest)**则是这个系统的核心“配置蓝图”。它通过分层、分阶段的精细化管理,确保从软件设计到硬件部署的每一步都精准可控。本文将用通俗语言与技术视角,解析四大清单的分类、作用及落地实践。一、为什么需要清单?——解决汽车软件开发的三大痛点复杂度爆炸:现代汽车软件模块超500个,传统开发模式易失控跨平
- 软件设计和软件架构之间的区别
前网易架构师-高司机
软件架构软件设计系统架构
作者简介:高科,先后在IBMPlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。并且深耕深度学习和数据集训练,提供商业化的视觉人工智能检测和预警系统(煤矿,工厂,制造业,消防等领域的工业化产品),合
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- 电子电路中,正负双电源供电的需求原因
promising-w
硬件电路设计硬件嵌入式硬件
1.允许信号双向摆动-**交流信号的处理**:许多电路(如音频放大器、运算放大器)需要处理正负交替变化的交流信号(例如声音信号、传感器输出)。如果仅用单正电源(如+12V),信号的“负半周”会被钳位到地(0V),导致失真。-**双电源的优势**:正负电源(如±12V)为信号提供了对称的电压范围,允许信号围绕“地”(0V)对称摆动,避免直流偏置,保留完整的波形(如下图)。单电源:信号范围0V~+Vc
- 计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
紫雾凌寒
AI炼金厂#计算机视觉#深度学习机器学习计算机视觉人工智能transformerConvNeXt动态网络神经网络
一、引言在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)长期以来一直是核心技术,自诞生以来,它在图像分类、目标检测、语义分割等诸多任务中都取得了令人瞩目的成果。然而,随着VisionTransformer(ViT)的出现,计算机视觉领域的格局发生了重大变化。ViT通过自注意力机制,打破了传统卷积神经网络的局部感知局限,能够捕捉长距离依赖关系,在图
- 【四.RAG技术与应用】【9.向量数据库:RAG中的智能存储解决方案】
再见孙悟空_
AI进阶之旅》数据库RAGRAG智能存储方案RAG存储解决方案RAG技术RAG应用RAG智能存储
想象一下这样的场景:你走进一个存放着1亿本未分类书籍的巨型仓库,要在5秒内找到和"量子计算机如何实现能量回收"相关的所有资料。传统数据库就像拿着书名的目录管理员,而向量数据库则是个能闻着知识气味找书的猎犬——这就是RAG技术革命的内核。一、RAG技术为何需要新基建?1.1传统数据库的"肌无力症"关系型数据库在结构化数据领域称霸了40年,但在处理"小明昨天在星巴克用苹果手机拍了张晚霞照片"这种非结构
- 自动驾驶平行仿真(基础课程一)
Yours monkey brother
自动驾驶人工智能机器学习
一、线性回归每当我们想预测一个数值时,就会弹出回归问题价值。常见示例包括预测价格(房屋、股票、等)、预测住院时间(对于住院患者)、预测需求(零售额)等等。并非每个预测问题是经典回归的一种。稍后,我们将引入分类问题,其目标是预测一组类别的成员资格。作为一个运行示例,假设我们希望估计房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以年)。要开发一个预测房价的模型,我们需要得到我们亲身体验数据,包
- 网络编程:TCP多线程实现多客户端服务器
qq_42343682
网络编程网络多线程
TCP多客户端服务器->远程控制(此篇用多线程实现!)原理图:完整代码如下:#include#include#include#include#include#include#include#includevoid*client_thread(void*arg);sem_tsm;//定义一个信号量intmain(void){//初始化信号量:wqsem_init(&sm,0,0);//1.创建套接字
- 基于PyTorch的深度学习2——Numpy与Tensor
Wis4e
深度学习pytorchnumpy
Tensor自称为神经网络界的Numpy,它与Numpy相似,二者可以共享内存,且之间的转换非常方便和高效。不过它们也有不同之处,最大的区别就是Numpy会把ndarray放在CPU中进行加速运算,而由Torch产生的Tensor会放在GPU中进行加速运算。1.创建创建Tensor的方法有很多,可以从列表或ndarray等类型进行构建,也可根据指定的形状构建。importtorch#根据list数
- 【北上广深杭大厂AI算法面试题】深度学习篇...Squeeze Excitation(SE)网络结构详解,附代码。(二)
努力毕业的小土博^_^
AI算法题库人工智能算法深度学习神经网络cnn
【北上广深杭大厂AI算法面试题】深度学习篇…SqueezeExcitation(SE)网络结构详解,附代码。(二)【北上广深杭大厂AI算法面试题】深度学习篇…SqueezeExcitation(SE)网络结构详解,附代码。(二)文章目录【北上广深杭大厂AI算法面试题】深度学习篇...SqueezeExcitation(SE)网络结构详解,附代码。(二)SqueezeExcitation(SE)网络
- 频谱泄露与加窗
Luis Li 的猫猫
机器学习人工智能信号处理
wave1,wave2实际在时域中是一样的正弦波,表达式y=sin(2πft),其中频率f=20Hz,但是经过快速傅里叶FFT变换之后,wave2的频域图中除了有冲激响应的峰之外,还出现了额外的频率元素,这个就是频谱泄露(SpectrumLeakage)。很显然,频谱泄露和信号泄露无关,从根本上说,它就是算法引起的。那同样的快速傅里叶算法,怎么会有这个差异?简单说来,造成这个问题的原因是:采样信号
- 机器学习--特征选择
Luis Li 的猫猫
机器学习人工智能
一、方法介绍(一)定义在机器学习中,特征选择是一个至关重要的环节,其目的是从原始特征集合中挑选出最具代表性和信息量的特征子集,使得在该子集上构建的机器学习模型能够达到最佳的预测或分类效果。在实际的数据集里,往往存在大量的特征,其中一些特征可能与目标变量高度相关,对模型的预测有重要贡献;而另一些特征可能是冗余的、不相关的甚至会对模型产生干扰,增加模型的复杂度和噪声。(二)特征选择方法特征选择方法通常
- uvm_info打印信息(整数/浮点数/字符串/数组/多个信号),快速更改冗余度及重载严重度
星海河空
经验分享linux
前言:熟悉打印信息方法和更改冗余度及严重度有利于大型项目的debug。一.打印信息1.打印整数:%d`uvm_info("MY_COMPONENT",$sformatf("my_signalvalue:%0d",my_signal),UVM_LOW)2.打印浮点数:%f或%.nf(n为保留的几位小数)`uvm_info("MY_COMPONENT",$sformatf("my_signalvalu
- Linux进程间通讯-信号
霍同学
linuxc语言
进程间通讯-信号目录信号概念常见信号及简单说明信号相关术语相关函数概念信号(signal)是Linux系统下的一种进程间通信机制。它是在软件层对中断机制的一种模拟。所以信号也被成为软中断。应用程序收到信号后,有三种处理方式,忽略,默认或者捕捉处理。进程收到信号后,会检查对该信号的处理机制,通常是终止进程或者忽略该信号,如果该信号指定了一个处理函数(捕捉),则会中断当前正在执行的任务,转而去执行该信
- GPU与CPU:架构对比与技术应用解析
Hello.Reader
运维其他架构
1.引言1.1为什么探讨GPU与CPU的对比?随着计算技术的不断发展,GPU(图形处理单元)和CPU(中央处理单元)已经成为现代计算机系统中最重要的两个组成部分。然而,随着应用场景的多样化和对性能需求的提高,这两种处理器的角色正在逐渐发生变化。GPU以其强大的并行计算能力,在深度学习、图像处理和科学计算等领域迅速崛起,而CPU则在通用计算任务中保持其核心地位。了解GPU与CPU的设计差异和适用场景
- 关于 SPU、SKU 和多对一关系的解释
今天你慧了码码码码码码码码码码
数据库
关于SPU、SKU和多对一关系的解释1.SPU(StandardProductUnit)SPU是标准化产品单元,指的是一个标准化的产品模型或模板。它定义了产品的基本属性,但不涉及具体的库存或销售信息。特点:描述产品的通用信息:例如名称、品牌、分类、规格等。不涉及具体库存:SPU是一个抽象的概念,不包含库存数量或价格。用于商品管理:帮助商家统一管理同一类商品。示例:一款手机的SPU可能是“iPhon
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag