目录
一、概述
1、什么是数学规划?
2、数学规划的一般形式
3、数学规划的分类
二、线性规划问题的求解
Matlab中规定线性规划的标准形式
Matlab求解线性规划的函数
举例
三、线性规划的典型例题
1、生产决策问题
2、投料问题
3、Matlab中线性整数规划的求解
a.概论
b.Matlab指令
4、背包问题
5、指派问题
6、钢管切割问题
四、非线性规划问题的求解
1、Matlab中非线性规划的标准型
2、Matlab求解非线性规划的函数
3、非线性规划例题
a、选址问题
b、飞行管理问题
数学规划是运筹学的一个分支,其用来研究:在给定条件下(约束条件),如何按照某一衡量指标(目标函数)来寻求计划、管理工作中的最优方案。
【求目标函数在一定约束条件下的极值问题】
a.线性规划
如果目标函数和和约束条件均是决策变量的线性表达式 ,那么此时的数学规划问题就属于线性规划。
当目标函数和或者约束条件中 有⼀个是决策变量x 的非线性表达式,那么此时数学规划问题就属于非线性规划。
解决非线性规划要比线性规划困难得多,目前没有通用算法,大多数算法都是在选定决策变量的初始值后,通过一定的搜索方法寻求最优的决策变量。
c.整数规划
整数规划是一类要求变量取整数值的数学规划。目前,所流行的求解整数规划的算法往往只适用于线性整数规划,所以本节学习的求解均针对线性整数规划。
d.0-1规划
整数规划的特殊情形,整数变量的取值只能为0和1。这时变量称为0-1变量,或称为二进制变量。
(2)求解的Matlab程序如下:
f=[-2;-3;5];
A=[-2,5,-1;1,3,1];
b=[-10;12];
Aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,A,b,Aeq,beq,zeros(3,1));
%zeros(3,1)表示创建一个3*1的数组,值都为0;
z=-y;
%注意这个fval要取负号(原来是求最大值,我们添加负号变成了最小值问题)
%% 生产决策问题
format long g %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
c = zeros(9,1); % 初始化目标函数的系数向量全为0
c(1) = 1.25 -0.25 -300/6000*5; % x1前面的系数是c1
c(2) = 1.25 -0.25 -321/10000*7;
c(3) = -250 / 4000 * 6;
c(4) = -783/7000*4;
c(5) = -200/4000 * 7;
c(6) = -300/6000*10;
c(7) = -321 / 10000 * 9;
c(8) = 2-0.35-250/4000*8;
c(9) = 2.8-0.5-321/10000*12-783/7000*11;
c = -c; % 我们求的是最大值,所以这里需要改变符号
% (2) 不等式约束
A = zeros(5,9);
A(1,1) = 5; A(1,6) = 10;
A(2,2) = 7; A(2,7) = 9; A(2,9) = 12;
A(3,3) = 6; A(3,8) = 8;
A(4,4) = 4; A(4,9) = 11;
A(5,5) = 7;
b = [6000 10000 4000 7000 4000]';
% (3) 等式约束
Aeq = [1 1 -1 -1 -1 0 0 0 0;
0 0 0 0 0 1 1 -1 0];
beq = [0 0]';
%(4)上下界
lb = zeros(9,1);
% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval
% fval =
% 1146.56650246305
% 注意,本题应该是一个整数规划的例子,我们在后面的整数规划部分再来重新求解。
intcon = 1:9;
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb)
fval = -fval
%% 投料问题
clear,clc
format long g %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
a=[1.25 8.75 0.5 5.75 3 7.25]; % 工地的横坐标
b=[1.25 0.75 4.75 5 6.5 7.25]; % 工地的纵坐标
x = [5 2]; % 料场的横坐标
y = [1 7]; % 料场的纵坐标
c = []; % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
for j =1:2
for i = 1:6
c = [c; sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)]; % 每循环一次就在c的末尾插入新的元素
end
end
% (2) 不等式约束
A =zeros(2,12);
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,12);
for i = 1:6
Aeq(i,i) = 1; Aeq(i,i+6) = 1;
end
% Aeq = [eye(6),eye(6)] % 两个单位矩阵横着拼起来
beq = [3 5 4 7 6 11]'; % 每个工地的日需求量
%(4)上下界
lb = zeros(12,1);
% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
x = reshape(x,6,2) % 将x变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1)
% fval =
% 135.281541790676
数学规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。
整数规划的分类
如不加特殊说明,则一般指整数线性规划。整数线性规划模型大致可分为两类:(1)变量全限制为整数时,称纯(完全)整数规划。
(2)变量部分限制为整数时,称混合整数规划。整数规划特点
(1)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况。①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
%% 线性整数规划问题
%% 例1
c=[-20,-10]';
intcon=[1,2]; % x1和x2限定为整数
A=[5,4;
2,5];
b=[24;13];
lb=zeros(2,1);
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)
fval = -fval
%% 例2
c=[18,23,5]';
intcon=3; % x3限定为整数
A=[107,500,0;
72,121,65;
-107,-500,0;
-72,-121,-65];
b=[50000;2250;-500;-2000];
lb=zeros(3,1);
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)
%% 例3
c=[-3;-2;-1]; intcon=3; % x3限定为整数
A=ones(1,3); b=7;
Aeq=[4 2 1]; beq=12;
lb=zeros(3,1); ub=[+inf;+inf;1]; %x(3)为0-1变量
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
%% 背包问题(货车运送货物的问题)
c = -[540 200 180 350 60 150 280 450 320 120]; % 目标函数的系数矩阵(最大化问题记得加负号)
intcon=[1:10]; % 整数变量的位置(一共10个决策变量,均为0-1整数变量)
A = [6 3 4 5 1 2 3 5 4 2]; b = 30; % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)
Aeq = []; beq =[]; % 不存在线性等式约束
lb = zeros(10,1); % 约束变量的范围下限
ub = ones(10,1); % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
fval = -fval
%% 指派问题(选择队员去进行游泳接力比赛)
clear;clc
c = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]'; % 目标函数的系数矩阵(先列后行的写法)
intcon = [1:20]; % 整数变量的位置(一共20个决策变量,均为0-1整数变量)
% 线性不等式约束的系数矩阵和常数项向量(每个人只能入选四种泳姿之一,一共五个约束)
A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];
% A = zeros(5,20);
% for i = 1:5
% A(i, (4*i-3): 4*i) = 1;
% end
b = [1;1;1;1;1];
% 线性等式约束的系数矩阵和常数项向量 (每种泳姿有且仅有一人参加,一共四个约束)
Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];
% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)]; % 或者写成 repmat(eye(4),1,5)
beq = [1;1;1;1];
lb = zeros(20,1); % 约束变量的范围下限
ub = ones(20,1); % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
% reshape(x,4,5)'
% 0 0 0 1 甲自由泳
% 1 0 0 0 乙蝶泳
% 0 1 0 0 丙仰泳
% 0 0 1 0 丁蛙泳
% 0 0 0 0 戊不参加
%% 钢管切割问题
%% (1)枚举法找出同一个原材料上所有的切割方法
for i = 0: 2 % 2.9m长的圆钢的数量
for j = 0: 3 % 2.1m长的圆钢的数量
for k = 0:6 % 1m长的圆钢的数量
if 2.9*i+2.1*j+1*k >= 6 && 2.9*i+2.1*j+1*k <= 6.9
disp([i, j, k])
end
end
end
end
% 有同学使用比较老的MATLAB版本,会出现浮点数计算的误差
% 只需要将上面的if这一行进行适当的放缩即可。
% if 2.9*i+2.1*j+1*k >= 6-0.0000001 && 2.9*i+2.1*j+1*k <= 6.9+0.0000001
% 有兴趣的同学可以百度下:浮点数计算误差
%% (2) 线性整数规划问题的求解
c = ones(7,1); % 目标函数的系数矩阵
intcon=[1:7]; % 整数变量的位置(一共7个决策变量,均为整数变量)
A = -[1 2 0 0 0 0 1;
0 0 3 2 1 0 1;
4 1 0 2 4 6 1]; % 线性不等式约束的系数矩阵
b = -[100 100 100]'; % 线性不等式约束的常数项向量
lb = zeros(7,1); % 约束变量的范围下限
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)
%% 非线性规划的函数
% [x,fval] = fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)
% x0表示给定的初始值(用行向量或者列向量表示),必须得写
% A b表示线性不等式约束
% Aeq beq 表示线性等式约束
% lb ub 表示上下界约束
% @fun表示目标函数
% @nonlfun表示非线性约束的函数
% option 表示求解非线性规划使用的方法
clear;clc
format long g %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
%% 例题1的求解
% max f(x) = x1^2 +x2^2 -x1*x2 -2x1 -5x2
% s.t. -(x1-1)^2 +x2 >= 0 ; 2x1-3x2+6 >= 0
x0 = [0 0]; %任意给定一个初始值
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1) % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
fval = -fval
% 一个值得讨论的地方,能不能把线性不等式约束Ax <= b也写到nonlfun1函数中?
% 先把nonlfun1中的c改为下面这样:
% c = [(x(1)-1)^2-x(2);
% -2*x(1)+3*x(2)-6];
% [x,fval] = fmincon(@fun1,x0,[],[],[],[],[],[],@nonlfun1)
% 结果也是可以计算出来的,但并不推荐这样做~
%% 使用其他算法对例题1求解
% edit fmincon % 查看fmincon的“源代码”
% Matlab2017a默认使用的算法是'interior-point' 内点法
% 使用interior point算法 (内点法)
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval
% 使用SQP算法 (序列二次规划法)
option = optimoptions('fmincon','Algorithm','sqp')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval %得到-4.358,远远大于内点法得到的-1,猜想是初始值的影响
% 改变初始值试试
x0 = [1 1]; %任意给定一个初始值
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option) % 最小值为-1,和内点法相同(这说明内点法的适应性要好)
fval = -fval
% 使用active set算法 (有效集法)
option = optimoptions('fmincon','Algorithm','active-set')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval
% 使用trust region reflective (信赖域反射算法)
option = optimoptions('fmincon','Algorithm','trust-region-reflective')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval
% this algorithm does not solve problems with the constraints you have specified.
% 这说明这个算法不适用我们这个约束条件,所以以后遇到了不能求解的情况,记得更换其他算法试试!!!
%% 选取初始值得到的结果可能会不满足限定条件,出现了一个Bug 因此选择的初始值很重要
x0 = [40.8, 10.8];
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval
% https://cn.mathworks.com/help/optim/ug/fmincon.html
%% 生成不同的随机初始值来优化代码,有一定几率会触发上面那个Bug,因此不推荐
n = 10; % 重复n次
Fval = +inf; X = [0,0]; %初始化最优的结果
A = [-2 3]; b = 6;
for i = 1:n
x0 = [rand()*10 , rand()*10]; %用随机数生成一个初始值(随机数的范围自己根据题目条件设置)
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option); % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
if fval < Fval % 如果找到了更小的值,那么就代替最优的结果
Fval = fval;
X = x;
end
end
Fval = -Fval
X
%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=10000000; %生成的随机数组数
x1=unifrnd(-100,100,n,1); % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=unifrnd(-100,100,n,1); % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x2
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
x = [x1(i), x2(i)]; %构造x向量, 这里千万别写成了:x =[x1, x2]
if ((x(1)-1)^2-x(2)<=0) & (-2*x(1)+3*x(2)-6 <= 0) % 判断是否满足条件
result = -x(1)^2-x(2)^2 +x(1)*x(2)+2*x(1)+5*x(2) ; % 如果满足条件就计算函数值
if result < fmin % 如果这个函数值小于我们之前计算出来的最小值
fmin = result; % 那么就更新这个函数值为新的最小值
x0 = x; % 并且将此时的x1 x2更新为初始值
end
end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1)
fval = -fval
%% 例题二的求解
x0 = [1 1 1]; %任意给定一个初始值
lb = [0 0 0]; % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2) % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下
% x =
% 0.552167405729277 1.20325915507969 0.947824046150443
% fval =
% 10.6510918606939
%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=1000000; %生成的随机数组数
x1= unifrnd(0,2,n,1); % 生成在[0,2]之间均匀分布的随机数组成的n行1列的向量构成x1
x2 = sqrt(2-x1); % 根据非线性等式约束用x1计算出x2
x3 = sqrt((3-x2)/2); % 根据非线性等式约束用x2计算出x3
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
x = [x1(i), x2(i), x3(i)]; %构造x向量, 这里千万别写成了:x =[x1, x2, x3]
if (-x(1)^2+x(2)-x(3)^2<=0) & (x(1)+x(2)^2+x(3)^2-20<=0) % 判断是否满足条件
result =sum(x.*x) + 8 ; % 如果满足条件就计算函数值
if result < fmin % 如果这个函数值小于我们之前计算出来的最小值
fmin = result; % 那么就更新这个函数值为新的最小值
x0 = x; % 并且将此时的x1 x2 x3更新为初始值
end
end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
lb = [0 0 0]; % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2) % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下
%% 例题三的求解(蒙特卡罗模拟那一讲的例题)
clear;clc
% 蒙特卡罗模拟得到的最大值为3445.6014
% 最大值处x1 x2 x3的取值为:
% 22.5823101903968 12.5823101903968 12.1265223966757
A = [1 -2 -2; 1 2 2]; b = [0 72];
x0 = [ 22.58 12.58 12.13];
Aeq = [1 -1 0]; beq = 10;
lb = [-inf 10 -inf]; ub = [inf 20 inf];
[x,fval] = fmincon(@fun3,x0,A,b,Aeq,beq,lb,ub,[]) % 注意没有非线性约束,所以这里可以用[]替代,或者干脆不写
fval = -fval
%% 飞行管理问题
format long g
%% (1)画六架飞机的位置
clear;clc
figure(1) % 生成一个图形
box on % 显示为封闭的盒子
% 绘制飞机的初始位置
data = [150 140 243;
85 85 236;
150 155 220.5;
145 50 159;
130 150 230;
0 0 52];
plot(data(:,1),data(:,2),'.r')
axis([0 160,0,160]);% 设置坐标轴刻度范围
hold on;
% 在图上标上注释
for i = 1:6
txt = ['飞机',num2str(i)];
text(data(i,1)+2,data(i,2)+2,txt,'FontSize',8)
end
% 把Matlab做出来的图可以导出,然后再放到PPT中画出飞机飞行方向的箭头(就和讲义上的类似)
%% 求解非线性规划问题
x0 = [0 0 0 0 0 0]; % 初始值
lb = -pi/6*ones(6,1);
ub = pi/6*ones(6,1);
[x,fval] = fmincon(@fun6,x0,[],[],[],[],lb,ub,@nonlfun6)
x = x * 180 / pi % 将弧度转换为度数
% 定义一:fval = 3.7315°
% 定义二: fval = 6.9547((°)^2)
总结:
自清风老师数学建模课堂,以及【课本】司守奎 《数学建模算法与应用》 第二版,仅作为笔记。