当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量。例如,每个RGB输入图像具有 3 × h × w 3\times h\times w 3×h×w的形状。我们将这个大小为 3 3 3的轴称为通道(channel)维度。
当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便与输入数据进行互相关运算。
当 c i > 1 c_i>1 ci>1时,我们卷积核的每个输入通道将包含形状为 k h × k w k_h\times k_w kh×kw的张量。将这些张量 c i c_i ci连结在一起可以得到形状为 c i × k h × k w c_i\times k_h\times k_w ci×kh×kw的卷积核。由于输入和卷积核都有 c i c_i ci个通道,我们可以对每个通道输入的二维张量和卷积核的二维张量进行互相关运算,再对通道求和(将 c i c_i ci的结果相加)得到二维张量。这是多通道输入和多输入通道卷积核之间进行二维互相关运算的结果。
import torch
from d2l import torch as d2l
def corr2d_multi_in(X, K):
# 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
print(corr2d_multi_in(X, K))
直观地说,我们可以将每个通道看作对不同特征的响应。
用 c i c_i ci和 c o c_o co分别表示输入和输出通道的数目,并让 k h k_h kh和 k w k_w kw为卷积核的高度和宽度。为了获得多个通道的输出,我们可以为每个输出通道创建一个形状为 c i × k h × k w c_i\times k_h\times k_w ci×kh×kw的卷积核张量,这样卷积核的形状是 c o × c i × k h × k w c_o\times c_i\times k_h\times k_w co×ci×kh×kw。在互相关运算中,每个输出通道先获取所有输入通道,再以对应该输出通道的卷积核计算出结果。
import torch
from d2l import torch as d2l
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
def corr2d_multi_in_out(X, K):
# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。
# 最后将所有结果都叠加在一起
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)
K = torch.stack((K, K + 1, K + 2), 0)
K.shape # 3*2*2*2
print(corr2d_multi_in_out(X, K))
我们可以将 1 × 1 1\times 1 1×1卷积层看作在每个像素位置应用的全连接层,以 c i c_i ci个输入值转换为 c o c_o co个输出值。
import torch
from d2l import torch as d2l
def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]
X = X.reshape((c_i, h * w))
K = K.reshape((c_o, c_i))
# 全连接层中的矩阵乘法
Y = torch.matmul(K, X)
return Y.reshape((c_o, h, w))