- 如何在 Linux 上安装 RTX 5090 / 5080 /5070 Ti / 5070 驱动程序 — 详细指南
知识大胖
NVIDIAGPU和大语言模型开发教程linux运维服务器
简介为了获得最佳性能,您需要在Linux上运行5090/5080/5070Ti/5070或其他50系列GPU(或Windows上的WSL)。这篇文章将包含有关如何操作的详细指南。主线内核和驱动程序怪癖之旅Nvidia50系列GPU拥有最新的Nvidia技术。但是,新硬件需要一些新软件或更新,这需要一些耐心。如果您在这里,您可能会遇到Ubuntu默认设置的障碍。不要害怕!我最近自己摸索了这个迷宫,结
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 什么是热力学计算?它如何帮助人工智能发展?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能量子计算
现代计算的基础是晶体管,这是一种微型电子开关,可以用它构建逻辑门,从而创建CPU或GPU等复杂的数字电路。随着技术的进步,晶体管变得越来越小。根据摩尔定律,集成电路中晶体管的数量大约每两年增加一倍。这种指数级增长使得计算技术呈指数级发展。然而,晶体管尺寸的缩小是有限度的。我们很快就会达到晶体管无法工作的阈值。此外,人工智能的进步使得对计算能力的需求比以往任何时候都更加迫切。根本问题是自然是随机的(
- LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
汀、人工智能
LLM技术汇总人工智能自然语言处理LLMAgentvLLMAI大模型大模型部署
LLM大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战1.环境准备GPU设备:A10,3090,V100,A100均可.#设置pip全局镜像(加速下载)pipconfigsetglobal.index-urlhttps://mirrors.aliyun.com/pypi/simple/#安装ms-swiftpipinstall'ms-swift[llm]'-U#vllm与
- 8卡RTX 5090D服务器部署Qwen3-32B-AWQ模型执行性能测试
一、背景最近得了一台8卡5090D服务器进行测试评估。GPU拓扑情况如下(test)root@ubuntu:/opt/models#nvidia-smitopo-mGPU0GPU1GPU2GPU3GPU4GPU5GPU6GPU7CPUAffinityNUMAAffinityGPUNUMAIDGPU0XNODENODENODESYSSYSSYSSYS0-31,64-950N/AGPU1NODEXNO
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 怎么强制macOS上的某个应用不使用独立显卡
背景之前碰到过企业微信更新之后强制使用独立GPU,后面找到了快捷指令的方式禁止企业微信使用独立GPU启动,后面某个版本更新好了。最近最近微信更新到了4.0.3.93版本,也出现了这个问题,不想再在快捷指令里启动了,因为占用菜单栏空间,所以找了一下,发现苹果官方DeveloperDocumentation给出了修改Info.plist文件禁止应用使用独立GPU的方法,具体参考方法二。一、快捷指令.a
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- 数据不Ready,一切AI Ready都是伪命题
2025年随着DeepSeekR1通用大模型的爆火,企业级AI应用元年正式来临。“AIReady”这个词随之火了起来,但什么是AIReady?是有了大模型接口,就是Ready?是买了GPU服务器,就能跑出结果?显然不是。在袋鼠云看来,AIReady不等于模型Ready,而是数据Ready。没有可用、可控、可理解的数据,AI只能是空中楼阁。AIReady,首先是DataReady。别让AIReady
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- 【零基础学AI】第36讲:GPT模型原理
1989
0基础学AI人工智能gptlstmrnnYOLO目标检测
本节课你将学到理解GPT模型的基本原理掌握Transformer解码器的工作机制实现一个简单的文本生成应用开始之前环境要求Python3.8+安装包:pipinstalltransformerstorch硬件:CPU即可运行(GPU可加速)前置知识了解基本的神经网络概念(第23讲内容)熟悉Python编程基础核心概念什么是GPT?GPT(GenerativePre-trainedTransform
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- 英伟达 Isaac ROS产品体验
芝麻香儿
Roadstodeeplearning.AI英伟达IsaacROS
这里写自定义目录标题英伟达IsaacROS产品体验运行的商品名称运行过程记录GPU加速仿真总结英伟达IsaacROS产品体验NVIDIAIsaacROS是一套为自主移动机器人(AMR)开发的硬件加速软件包,专为在NVIDIAGPU和Jetson平台上优化ROS(RobotOperatingSystem)应用程序而设计。它通过提供一系列模块化的ROS包和完整的处理管道,帮助开发者加速AI感知、图像处
- 双轮驱动:政策激励与外部制约下的国产服务器市场演进
科智咨询
服务器运维gpu算力
2025年6月,科智咨询正式发布《中国国产服务器市场研究报告(2025)》,报告从国产服务器产业概述、政策环境分析、市场现状与竞争格局、面临挑战与市场机遇等维度,深入剖析国产服务器市场现状及未来发展趋势。2022年10月,美国首次将A100和H100等高端GPU列入对华出口管制清单,标志着对中国服务器芯片的针对性限制正式拉开序幕。与此同时,国内相关支持政策持续落地,从“国产替代”专项资金到鼓励核心
- RapidRAW RAW 图像编辑器
罗光记
百度数据库facebooksegmentfault经验分享
RapidRAW是一款现代化的高性能AdobeLightroom替代品。它体积轻巧(不足30MB),适用于Windows、macOS和Linux,提供功能丰富、美观的编辑体验。一款美观、无损且GPU加速的RAW图像编辑器,在构建时充分考虑了性能。主要特点核心编辑引擎GPU加速处理:所有图像调整均使用自定义WGSL着色器在GPU上处理,以获得快速反馈。蒙版:利用AI主体和前景检测功能,即时创建精准蒙
- Chromium 引擎启用 Skia Graphite后性能飙升
罗光记
百度facebook数据库经验分享oneapi
在一项被许多开发者关注的性能优化进展中,Chromium项目正逐步将其图形渲染后台从经典的Ganesh迁移至Skia新一代图形后端Graphite,而最新测试结果显示,这一举措带来了显著的性能提升。Skia是谷歌主导的跨平台2D图形库,长期以来一直是Chromium浏览器的核心组成部分。Ganesh是Skia的传统渲染后端,而Graphite是为现代GPU和图形API(如Vulkan和Metal)
- 在Ubuntu系统下使用Docker部署ollama并使用英伟达gpu加速
longze_7
docker容器运维
下载安装英伟达Nvidiacontainertoolkit:curl-fsSLhttps://nvidia.github.io/libnvidia-container/gpgkey|sudogpg--dearmor-o/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg\&&curl-s-Lhttps://nvidia.github.io
- 多租户场景下的资源配额管理,如何实现公平分配与优先级调度?
百态老人
人工智能数据库大数据
多租户场景下的资源配额管理与调度策略体系(2025技术视角)一、资源配额管理的核心机制资源配额是多租户环境下实现资源隔离与共享的基石,其核心在于建立动态可扩展的约束规则与智能化的执行框架。当前主流技术体系包含以下核心组件:1.分层配额模型物理层配额:基于硬件资源的绝对限制(如CPU核数、内存容量、GPU算力),通过Linuxcgroups或WindowsJobObjects实现资源硬性隔离。例如,
- 异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析
观熵
大模型高阶优化技术专题算法人工智能
异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析关键词异构调度、Kubernetes调度器、GPU任务绑定、MIG分配、推理流量调度、服务亲和性、任务隔离、资源优先级、边缘协同、动态算力管理摘要在AI推理系统的生产级部署中,单一自动扩缩容机制已无法满足实际复杂环境中对资源利用率、任务延迟与系统稳定性的多重要求。特别是在GPU/NPU/CPU并存的异构计算集群中,运行
- 跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析
观熵
大模型高阶优化技术专题架构人工智能
跨集群异构推理系统协同调度实战:边缘-中心联合部署与多租户算力调度架构解析关键词跨集群调度、边缘推理、GPU-NPU协同、KubeFed、资源分域、任务下发、多租户隔离、MLOps联邦调度、推理闭环、负载均衡摘要在AI推理系统进入产业级部署阶段后,模型服务逐步从中心化集群向边缘设备、跨地理分布式节点延伸,形成典型的“中心+边缘”异构多集群形态。为实现高效资源利用与低时延响应,推理系统需要支持节点异
- 冷冻电镜重构的GPU加速破局:从Relion到CryoSPARC的并行重构算法
九章云极AladdinEdu
人工智能pytorch架构gpu算力机器学习自然语言处理深度学习
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。一、冷冻电镜重构的算力困局随着单粒子冷冻电镜(cryo-EM)分辨率突破原子级别(<3Å),重构算法计算复杂度呈指数级增长。传统CPU集群处理百万级粒子数据集需数周时间,成为结构生物学研究的关键瓶颈。本文重点分析Relion和CryoSPARC两大主流软件在GPU并行化方面的技术
- jetson orin nano安装GPU版本的pytorch过程
小鲈鱼-
pytorch人工智能python
一、安装jetpack组件和安装CUDA/cuDNN可以参考下面这个博客「解析」JetsonOrinNX安装CUDA/cuDNN_jetsoncuda-CSDN博客二、安装Pytorch和torchaudio可以直接看官方给的步骤https://pytorch.org/audio/main/build.jetson.html
- TensorBase开发者快速入门指南
宗隆裙
TensorBase开发者快速入门指南tensorbasetensorbase/tensorbase:是一个现代的GPU加速的张量数据库。适合用于大规模数据分析和机器学习。项目地址:https://gitcode.com/gh_mirrors/te/tensorbase前言TensorBase是一个基于Rust构建的高性能时序数据库,专为大规模数据分析场景设计。本文将详细介绍如何搭建TensorB
- 鸿蒙next开发:性能测试工具SmartPerf Editor
代码与思维
鸿蒙harmonyos华为嵌入式硬件鸿蒙驱动开发
SmartPerfEditor是一款PC端桌面应用,通过监测、采集应用运行时FPS、CPU、GPU、Memory、Battery、Network等性能数据,帮助开发者了解应用的性能状况。SmartPerfEditor还集成了DrawingDoc功能,可录制RenderService绘制指令,回放并生成不同图形库文件。通过逐帧逐绘制指令回放,来识别是否存在冗余绘制、是否可以优化绘制指令的数量,从而提
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- NCCL 核心集体通信操作深度解析:从原理到优化实践
清风 001
AI大模型底层建设gpu算力ai
目录引言:NCCL——分布式训练的通信引擎一、NCCL基础:GPU通信的“加速器”1.1NCCL与MPI的协同1.2集体通信的价值二、NCCL核心操作深度解析2.1AllGather:全局数据聚合2.1.1定义与目标2.1.2算法原理2.1.3性能影响因素2.1.4测试方法(nccl-tests)2.2AllReduce:梯度聚合的核心2.2.1定义与目标2.2.2算法原理2.2.3性能影响因素2
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- Windows Subsystem for Linux (WSL):现代开发的终极跨平台方案
止观止
WindowswindowslinuxWSL开发环境
引言WindowsSubsystemforLinux(WSL)是微软革命性的技术突破,它彻底改变了Windows平台的开发体验。通过实现在Windows内核中无缝运行原生Linux二进制文件,WSL弥合了Windows与Linux之间的鸿沟。本文将从架构原理、实操指南到高阶应用进行全面剖析,您将掌握:WSL1与WSL2的架构差异与性能对比文件系统互通与跨平台开发的最佳实践GPU加速支持与容器化集成
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb