例如:不论train 还是pridect 还是load(model)新旧模型各种不兼容
6.0以下小版本可以运行 ,如下:
D:\ProgramData\Miniconda3\python.exe D:/yolov5-6.0/ai2/compare.py
Fusing layers...
{'辣椒炒蛋': '0.9343', '蒜苔炒肉': '0.8900', '肉沫酸豆角': '0.7458', '干煸青豆': '0.7290', '凉面': '0.7008'}
model with cuda local Runtime: 0.302 seconds per image, FPS: 3.31
Process finished with exit code 0
6.0以上版本出现的问题 ,如下:
![在这里插入图片描述](https://img-blog.csdnimg.cn/c3b17147772b4bb89eb9878119a1b9ac.jpeg
提示:说是没有sppf这个方法:
在老版本的 common.py
文件里 添加如下代码:
import warnings
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
6.0以上版本出现的问题 ,如下:
![在这里插入图片描述](https://img-blog.csdnimg.cn/c3b17147772b4bb89eb9878119a1b9ac.jpeg
提示:大家都说通道channel不相同,但是我觉得说的不是我这个问题,我现在加载模型,怎么调整channel:
在老版本的 common.py
文件里老代码 替换掉
:
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
提示:没查是啥意思,反正这里面这几个地方有问题,对应改:
在老版本的 yolo.py
文件里老代码class Detect(nn.Module): class Detect(nn.Module):
替换掉
:
写法如下:
后面有一句话这里,原代码有个check_version(torch.__version__,'1.10.0'):
的方法:这个方法不存在,目的是为了版本大于1.10,所以换个写法就ok了。
if (torch.__version__>='1.10.0'):
# torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
export = False # export mode
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use inplace ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, conf), 4)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
t = self.anchors[i].dtype
shape = 1, self.na, ny, nx, 2 # grid shape
y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
if (torch.__version__>='1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
# yv, xv = torch.meshgrid(y, x, indexing='ij')
yv, xv = torch.meshgrid(y, x)
else:
yv, xv = torch.meshgrid(y, x)
grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
return grid, anchor_grid
剩下的就是顺利的拿到结果了,祝大家一切顺利:
如果还有其他问题 可以留言,大家一起探讨!!!