【超详细】深度聚类

现有的深度聚类算法大都由聚类损失与网络损失两部分构成,博客从两个视角总结现有的深度聚类算法,即聚类模型与神经网络模型

1. 什么是深度聚类?

经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。为了解决该问题,深度聚类的概念被提出,即联合优化表示学习和聚类

【超详细】深度聚类_第1张图片

2. 从两个视角看深度聚类

【超详细】深度聚类_第2张图片

3. 从聚类模型看深度聚类

3.1 基于K-means的深度聚类

【超详细】深度聚类_第3张图片

参考:聚类——K-means - 凯鲁嘎吉 - 博客园

3.2 基于谱聚类的深度聚类

【超详细】深度聚类_第4张图片

参考:多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning) ,关于“On the eigenvectors of p-Laplacian”目标函数的优化问题 - 凯鲁嘎吉 - 博客园

3.3 基于子空间聚类(Subspace Clustering, SC)的深度聚类

【超详细】深度聚类_第5张图片

参考:深度多视图子空间聚类,多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning),字典更新与K-SVD - 凯鲁嘎吉 - 博客园

3.4 基于高斯混合模型(Gaussian Mixture Model, GMM)的深度聚类

【超详细】深度聚类_第6张图片

参考:聚类——GMM,基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG) - 凯鲁嘎吉 - 博客园

3.5 基于互信息的深度聚类

【超详细】深度聚类_第7张图片

参考:COMPLETER: 基于对比预测的缺失视图聚类方法,Meta-RL——Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices - 凯鲁嘎吉 - 博客园

3.6 基于KL的深度聚类

【超详细】深度聚类_第8张图片

参考:Deep Clustering Algorithms ,关于“Unsupervised Deep Embedding for Clustering Analysis”的优化问题,结构深层聚类网络,具有协同训练的深度嵌入多视图聚类 - 凯鲁嘎吉 -博客园

4. 从神经网络模型看深度聚类

4.1 基于自编码器(AutoEncoder, AE)的深度聚类

【超详细】深度聚类_第9张图片

参考:Deep Clustering Algorithms - 凯鲁嘎吉 - 博客园 (DEC, IDEC, DFKM, DCEC)

4.2 基于变分自编码器(Variational AutoEncoder, VAE)的深度聚类

【超详细】深度聚类_第10张图片

参考:变分推断与变分自编码器,变分深度嵌入(Variational Deep Embedding, VaDE) ,基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG),元学习——Meta-Amortized Variational Inference and Learning,RL——Deep Reinforcement Learning amidst Continual/Lifelong Structured Non-Stationarity - 凯鲁嘎吉 - 博客园

4.3 基于生成对抗网络(Generative Adversarial Network, GAN)的深度聚类

【超详细】深度聚类_第11张图片

参考:生成对抗网络(GAN与W-GAN) ,ClusterGAN: 生成对抗网络中的潜在空间聚类,双层优化问题:统一GAN,演员-评论员与元学习方法(Bilevel Optimization Problem unifies GAN, Actor-Critic, and Meta-Learning Methods) - 凯鲁嘎吉 - 博客园

4.4 基于孪生网络(Siamese Neural Network)/对比学习(Contrastive Learning)的深度聚类

【超详细】深度聚类_第12张图片

参考:从对比学习(Contrastive Learning)到对比聚类(Contrastive Clustering),COMPLETER: 基于对比预测的缺失视图聚类方法 - 凯鲁嘎吉 - 博客园

4.5 基于图神经网络(Graph Neural Network)的深度聚类

【超详细】深度聚类_第13张图片

作者:凯鲁嘎吉

转载来源:(转载请保留来源)

http://www.cnblogs.com/kailugaji/


你可能感兴趣的:(Deep,learning,人工智能,深度学习,聚类)