Keras中自定义层时build函数和call函数的区别在于,buid函数需要先将待训练的变量或者含参数变量的层先定义好,比如权重W、Conv2D层等,这些带有待训练变量的量只能在buid中创建,call中只能通过self使用已构建的量。笔记参考以下2网页内容:
问题引出
详解
本文通过两个定义例子来说明build函数和call函数的使用
from tensorflow.keras.layers import Layer
class crl_attention(Layer):
def __init__(self, **kwargs):
super(crl_attention, self).__init__(**kwargs)
def build(self, input_shape):
self.W = self.add_weight(name='attention_weight', shape=(input_shape[-1], 1),
initializer='random_normal', trainable=True)
self.b = self.add_weight(name='attention_bias', shape=(input_shape[1], 1),
initializer='zeros', trainable=True)
super(crl_attention, self).build(input_shape)
def call(self, x):
# Alignment scores. Pass them through tanh function
e = K.relu(K.dot(x, self.W) + self.b)
# Remove dimension of size 1
e = K.squeeze(e, axis=-1)
# Compute the weights
alpha = K.softmax(e)
# Reshape to tensorFlow format
alpha = K.expand_dims(alpha, axis=-1)
# Compute the context vector
context = x * alpha
context = K.sum(context, axis=1)
return context
def build(self, inputs):
self.w = tf.random_normal_initializer(mean=0.0, stddev=1e-4)
if self.bias:
self.b = tf.constant_initializer(0.0)
else:
self.b = None
self.conv_a = Conv2D(filters=self.filter_num, kernel_size=(self.filter_size, self.filter_size), strides=(self.stride, self.stride), padding='VALID', use_bias=True, kernel_initializer=self.w, bias_initializer=self.b)
self.conv_b = Conv2D(filters=self.filter_num, kernel_size=(self.filter_size, self.filter_size), strides=(self.stride, self.stride), padding=self.pad, use_bias=True, kernel_initializer=self.w, bias_initializer=self.b)
self.conv_c = Conv2D(filters=self.filter_num, kernel_size=(self.filter_size, self.filter_size), strides=(self.stride, self.stride), padding='VALID', use_bias=False, kernel_initializer=self.w)
self.conv_d = Conv2D(filters=self.filter_num, kernel_size=(self.filter_size, self.filter_size), strides=(self.stride, self.stride),padding=self.pad, use_bias=False, kernel_initializer=self.w)
def call(self, inputs):
if self.bias:
if self.pad == 'REFLECT':
self.p = (self.filter_size - 1) // 2
self.x = tf.pad(inputs, [[0, 0], [self.p, self.p], [self.p, self.p], [0, 0]], 'REFLECT')
return self.conv_a(self.x)
else:
return self.conv_b(inputs)
else:
if self.pad == 'REFLECT':
self.p = (self.filter_size - 1) // 2
self.x = tf.pad(inputs, [[0, 0], [self.p, self.p], [self.p, self.p], [0, 0]], 'REFLECT')
return self.conv_c(self.x)
else:
return self.conv_d(inputs)
例子1的build函数是自定义训练参数W, 例子2是定义已有的模块Conv2D(这些模块都内含待训练的参数),这些有参数的量都需要在buid中定义才能够在call函数中使用, call函数中不能直接定义Conv2D且使用,比如call函数中写以下句子会报错:
def call(input):
res = Conv2D(...)(input)