[NLP]——The Annotated Transformer(实战篇)

目录

  • 前言
  • One example
    • Tools
      • Data
      • LOSS & OPTIM
      • Regularization
    • RUN
  • Real World Example

前言

[NLP]——The Annotated Transformer(模型篇)

One example

Tools

Data

class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1] # 通过前一个位置
            self.trg_y = trg[:, 1:] # 预测后一个位置
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2) # 长度pad
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) # 长度pad & mask
        return tgt_mask
global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
    "Keep augmenting batch and calculate total number of tokens + padding."
    global max_src_in_batch, max_tgt_in_batch
    if count == 1:
        max_src_in_batch = 0
        max_tgt_in_batch = 0
    max_src_in_batch = max(max_src_in_batch,  len(new.src))
    max_tgt_in_batch = max(max_tgt_in_batch,  len(new.trg) + 2)
    src_elements = count * max_src_in_batch
    tgt_elements = count * max_tgt_in_batch
    return max(src_elements, tgt_elements)
def data_gen(V, batch, nbatches):
    "Generate random data for a src-tgt copy task."
    for i in range(nbatches):
        data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10)))
        data[:, 0] = 1 # 1表示start,后面decode时,也是先从1开始
        src = Variable(data, requires_grad=False)
        tgt = Variable(data, requires_grad=False)
        yield Batch(src, tgt, 0)

LOSS & OPTIM

计算学习率的公式:
l r a t e = d m o d e l − 0.5 ∗ m i n ( s t e p − 0.5 , s t e p ∗ w a r m u p − 1.5 ) l_{rate} = d_{model}^{-0.5} * min(step^{-0.5}, step * warmup ^{-1.5}) lrate=dmodel0.5min(step0.5,stepwarmup1.5)

class NoamOpt:
    "Optim wrapper that implements rate."
    def __init__(self, model_size, factor, warmup, optimizer):
        self.optimizer = optimizer
        self._step = 0
        self.warmup = warmup
        self.factor = factor
        self.model_size = model_size
        self._rate = 0
        
    def step(self):
        "Update parameters and rate"
        self._step += 1
        rate = self.rate()
        for p in self.optimizer.param_groups:
            p['lr'] = rate
        self._rate = rate
        self.optimizer.step()
        
    def rate(self, step = None): # 计算每一个step的学习率
        "Implement `lrate` above"
        if step is None:
            step = self._step
        return self.factor * \
            (self.model_size ** (-0.5) *
            min(step ** (-0.5), step * self.warmup ** (-1.5)))

趋势:一开始 s t e p ∗ w a r m u p − 1.5 step * warmup ^ {-1.5} stepwarmup1.5更小,所以随着step而线性增长,后来随着step增加, s t e p − 0.5 step^{-0.5} step0.5的减小,而减小。

opts = [NoamOpt(512, 1, 4000, None), 
        NoamOpt(512, 1, 8000, None),
        NoamOpt(256, 1, 4000, None)]
plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)])
plt.legend(["512:4000", "512:8000", "256:4000"])

[NLP]——The Annotated Transformer(实战篇)_第1张图片

def get_std_opt(model):
    return NoamOpt(model.src_embed[0].d_model, 2, 4000,
            torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
class SimpleLossCompute:
    "A simple loss compute and train function."
    def __init__(self, generator, criterion, opt=None):
        self.generator = generator # 模型中的分类层
        self.criterion = criterion # KL散度定义的loss
        self.opt = opt # 学习率调节器
        
    def __call__(self, x, y, norm):
        x = self.generator(x)
        loss = self.criterion(x.contiguous().view(-1, x.size(-1)), 
                              y.contiguous().view(-1)) / norm
        loss.backward()
        if self.opt is not None:
            self.opt.step()
            self.opt.optimizer.zero_grad()
        return loss.data[0] * norm

Regularization

class LabelSmoothing(nn.Module):
    "Implement label smoothing."
    def __init__(self, size, padding_idx, smoothing=0.0):
        super(LabelSmoothing, self).__init__()
        self.criterion = nn.KLDivLoss(size_average=False)
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.true_dist = None
        
    def forward(self, x, target):
        assert x.size(1) == self.size
        true_dist = x.data.clone()
        true_dist.fill_(self.smoothing / (self.size - 2)) # 先用 smoothing / size -2 填满整个向量
        true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) # 再在target所对应的下标位置,填上置信度
        true_dist[:, self.padding_idx] = 0
        mask = torch.nonzero(target.data == self.padding_idx)
        if mask.dim() > 0:
            true_dist.index_fill_(0, mask.squeeze(), 0.0)
        self.true_dist = true_dist
        return self.criterion(x, Variable(true_dist, requires_grad=False))
crit = LabelSmoothing(5, 0, 0.4)
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0], # 这里的0理解为padding,不计入loss
                             [0, 0.2, 0.7, 0.1, 0], 
                             [0, 0.2, 0.7, 0.1, 0]])
v = crit(Variable(predict.log()), 
         Variable(torch.LongTensor([2, 1, 0]))) # 这里的0也代表padding?

# Show the target distributions expected by the system.
plt.imshow(crit.true_dist)

[NLP]——The Annotated Transformer(实战篇)_第2张图片
KL散度衡量的是两个概率分布之间的相似性,公式如下:
D K L ( p ∣ ∣ q ) = ∑ i = 1 N p ( x i ) log ⁡ p ( x i ) / q ( x i ) D_{KL}(p||q) = \sum_{i=1}^{N}p(x_i)\log{p(x_i)/q(x_i)} DKL(pq)=i=1Np(xi)logp(xi)/q(xi)
但下面的代码表明,如果相似性到达一定程度,反而会有惩罚???(原文说的是:Lobel smoothing actually starts to penalize the model if it gets very confident about a given choice.)

crit = LabelSmoothing(5, 0, 0.1)
def loss(x):
    d = x + 3 * 1
    predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d],
                                 ])
    #print(predict)
    return crit(Variable(predict.log()),
                 Variable(torch.LongTensor([1]))).data[0]
plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)])

[NLP]——The Annotated Transformer(实战篇)_第3张图片

RUN

def run_epoch(data_iter, model, loss_compute):
    "Standard Training and Logging Function"
    start = time.time()
    total_tokens = 0
    total_loss = 0
    tokens = 0
    for i, batch in enumerate(data_iter):
        out = model.forward(batch.src, batch.trg, 
                            batch.src_mask, batch.trg_mask)
        loss = loss_compute(out, batch.trg_y, batch.ntokens)
        total_loss += loss
        total_tokens += batch.ntokens
        tokens += batch.ntokens
        if i % 50 == 1:
            elapsed = time.time() - start
            print("Epoch Step: %d Loss: %f Tokens per Sec: %f" %
                    (i, loss / batch.ntokens, tokens / elapsed))
            start = time.time()
            tokens = 0
    return total_loss / total_tokens

训练

# Train the simple copy task.
V = 11
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0)
model = make_model(V, V, N=2)
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400,
        torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))

for epoch in range(10):
    model.train()
    run_epoch(data_gen(V, 30, 20), model, 
              SimpleLossCompute(model.generator, criterion, model_opt))
    model.eval()
    print(run_epoch(data_gen(V, 30, 5), model, 
                    SimpleLossCompute(model.generator, criterion, None)))

测试

def greedy_decode(model, src, src_mask, max_len, start_symbol):
    memory = model.encode(src, src_mask)
    ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
    for i in range(max_len-1):
        out = model.decode(memory, src_mask, 
                           Variable(ys), 
                           Variable(subsequent_mask(ys.size(1))
                                    .type_as(src.data)))
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim = 1)
        next_word = next_word.data[0]
        ys = torch.cat([ys, 
                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
    return ys

model.eval()
src = Variable(torch.LongTensor([[1,2,3,4,5,6,7,8,9,10]]) )
src_mask = Variable(torch.ones(1, 1, 10) )
print(greedy_decode(model, src, src_mask, max_len=10, start_symbol=1))

Real World Example

# For data loading.
from torchtext import data, datasets

if True:
    import spacy
    spacy_de = spacy.load('de')
    spacy_en = spacy.load('en')

    def tokenize_de(text):
        return [tok.text for tok in spacy_de.tokenizer(text)]

    def tokenize_en(text):
        return [tok.text for tok in spacy_en.tokenizer(text)]

    BOS_WORD = ''
    EOS_WORD = ''
    BLANK_WORD = ""
    SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD)
    TGT = data.Field(tokenize=tokenize_en, init_token = BOS_WORD, 
                     eos_token = EOS_WORD, pad_token=BLANK_WORD)

    MAX_LEN = 100
    train, val, test = datasets.IWSLT.splits(
        exts=('.de', '.en'), fields=(SRC, TGT), 
        filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and 
            len(vars(x)['trg']) <= MAX_LEN)
    MIN_FREQ = 2
    SRC.build_vocab(train.src, min_freq=MIN_FREQ)
    TGT.build_vocab(train.trg, min_freq=MIN_FREQ)

妈的spacy下载不下来

你可能感兴趣的:(nlp之家)