- 【AI深度学习基础】Pandas完全指南入门篇:数据处理的瑞士军刀 (含完整代码)
arbboter
人工智能人工智能深度学习pandas数据处理数据分析数据清洗数据分析效率提升
Pandas系列文章导航入门篇进阶篇终极篇一、引言在大数据与AI驱动的时代,数据预处理和分析是深度学习与机器学习的基石。Pandas作为Python生态中最强大的数据处理库,以其灵活的数据结构(如DataFrame和Series)和丰富的功能(数据清洗、转换、聚合等),成为数据科学家和工程师的核心工具。Pandas以Series(一维标签数组)和DataFrame(二维表格)为核心数据结构,提供高
- 沃丰科技AI浅谈|语音交互的三驾马车:ASR、NLP、TTS
沃丰科技
人工智能科技自然语言处理
在日常生活中,AI机器人离我们很近。你是否接到过这样的电话:“您好,检测到您已经购买某产品一周的时间了,请问您的使用感受如何?”“请问您对产品满意吗?有什么建议给到这边吗?”全程对话亲切无障碍,您可能觉得这是一个大型企业对于用户的恳切关注。如果我告诉您,这都是由外呼机器人拨打并且能够自行记录下您的意见和建议,以供企业改进,您会惊讶吗?基于深度神经学算法和卷积神经网络算法的AI外呼机器人,它是融合自
- kNN算法:对红酒数据进行分类
阿拉保
算法分类数据挖掘
第2关使用sklearn中的kNN算法进行分类fromsklearn.neighborsimportKNeighborsClassifierdefclassification(train_feature,train_label,test_feature):'''使用KNeighborsClassifier对test_feature进行分类:paramtrain_feature:训练集数据:para
- Delta Lake的Liquid Clustering
不确定性确定你我
大数据
DeltaLake的LiquidClustering(液态聚类)是一种高效的数据布局优化技术,旨在解决传统分区和Z-Order排序的局限性。它通过自动化和增量式的数据布局优化,提升查询性能并减少存储和计算成本。以下是其原理、实现方式以及实际场景中的应用解析。LiquidClustering的核心原理动态数据布局:LiquidClustering基于树形算法,优化数据文件的大小和数量,使其均匀分布。
- 深入剖析C语言数据结构的时间复杂度和空间复杂度
共享家9527
数据结构c算法数据结构c语言
在计算机科学领域,数据结构和算法是基石,而理解它们的时间复杂度和空间复杂度则是评估其性能的关键。在C语言的世界里,这些概念显得尤为重要,因为C语言被广泛应用于系统开发、嵌入式编程等对性能要求极高的领域。目录1.复杂度分析的重要性2.大O表示法2.1大O表示法的定义2.2常见的大O复杂度级别3.时间复杂度分析3.1计算步骤计数法3.2递归算法的时间复杂度4.空间复杂度分析4.1栈空间4.2堆空间4.
- 嘉立创EDA专业版切换账号方法
菜只因C
服务器运维
1简介嘉立创EDA专业版是一款功能强大且专业的电子设计自动化软件,专为满足电子工程师和相关专业人员的复杂设计需求而打造。在功能方面,它提供了丰富的原理图设计工具,支持快速绘制各种复杂电路原理图,可方便地进行元件库管理,用户能轻松创建、编辑和调用各类元件。其PCB设计功能更是出色,具备先进的布线算法,能实现高效的自动布线,同时也支持手动精细布线,满足不同设计要求。还拥有强大的规则检查功能,可对设计进
- 对“预训练”的理解
衣衣困
深度学习神经网络自然语言处理
预训练有什么用传统的机器学习是偏数学的,对数据的量不做过多要求,而深度学习的项目通常是有大量的数据可供使用。在平常的任务或者项目中,我们可能并没有大量数据,只有少量数据,在这时我们就可以通过“借用”有大数据支持的模型的参数,作为基准,这样就能提高效率和准确率。因为他们神经网络的浅层是相似的,也就是说,在任务相似的情况下,可以用已有的模型即“预训练”好的模型参数实现小数据量的模型训练。预训练可以节省
- Java 大视界 -- Java 大数据机器学习模型的可解释性增强技术与应用(107)
青云交
大数据新视界Java大视界大数据java可解释性AISHAPLIME因果推理可视化交互
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- MySQL JOIN 与子查询深度对比:原理、性能陷阱与优化策略
Isaac_Gao
数据库mysql数据库MySQLJOIN性能MySQL子查询优化JOIN和子查询的区别EXPLAIN执行计划解读
1.基础概念:JOIN与子查询的本质区别1.1JOIN的核心作用目标:直接关联两个表的行,通过匹配条件(如ON或USING)合并数据。典型场景:需要同时获取两个表的字段(如SELECTA.col,B.colFROMAJOINB)。执行逻辑:数据库一次性处理两表关系,优化器可能选择Nested-LoopJoin、HashJoin或MergeJoin算法。1.2子查询的两种类型非相关子查询(独立子查询
- 大模型中的Token究竟是什么?从原理到作用深度解析
自然语言处理算法人工智能
引言在人工智能领域,大型语言模型(LLM)如GPT-4、Claude等系统性地改变了人机交互方式。这些模型处理文本的核心单元被称为"Token",这个看似简单的概念实则蕴含复杂的工程设计和语言学原理。本文将深入解析Token的本质、技术实现及其在模型运作中的关键作用。Token化技术全景图核心处理流程原始文本→预处理→分词算法→词表映射→模型输入↓↓↓大小写转换子词拆分策略特殊Token添加标点规
- 常用限流算法介绍
十五001
其他算法java网络
限流是防止系统过载的重要手段,广泛应用于高并发场景。1.什么是限流算法?定义限流算法是一种用于控制请求流量的技术,防止系统因请求过多而过载。通过限制单位时间内允许通过的请求数量,可以有效保护系统资源,确保服务的稳定性和可用性。2.常见的限流算法2.1固定窗口计数器算法原理:将时间分成固定大小的窗口,每个窗口内允许通过的请求数量固定。如果当前窗口的请求数量超过限制,则拒绝后续请求。优点:实现简单,性
- Spring Boot中的策略模式:如何基于ID灵活选择服务类?
墨瑾轩
一起学学Java【一】springboot策略模式后端
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣SpringBoot中的策略模式:如何基于ID灵活选择服务类?在软件开发中,策略模式是一种行为设计模式,它使你能够在运行时更改算法或行为。在SpringBoot应用中,通过策略模式实现基于某种条件(如ID)来动态选择不同的服务类,可以使代码更加灵活和可维护。本
- 数据挖掘data mining
Wlq0415
学习5数据挖掘人工智能
数据挖掘是从大量数据集中提取有用信息和知识的过程。它通常涉及使用算法和技术来分析数据,以发现数据中的模式、趋势和关联。数据挖掘可以帮助企业和组织理解客户行为,预测市场趋势,优化运营流程等。数据挖掘的过程大致可以分为以下几个步骤:定义问题:明确数据挖掘的目的和需要解决的问题。数据收集:从各种数据源中收集相关的数据。数据预处理:清洗和整理数据,处理缺失值、异常值等问题。数据转换:将原始数据转换成适合挖
- 基于K8S设计实现机器学习管理调度平台
richenlin
机器学习
设计和实现一套基于Kubernetes(K8s)的机器学习管理调度平台,目标是利用K8s的容器化和调度能力,提供高效的资源管理、任务调度、可扩展性及灵活性,适应机器学习(ML)训练、推理等不同场景的需求。以下是平台设计的主要模块和实施步骤:1.系统架构概述该平台需要一个多层架构,其中K8s作为底层容器调度和资源管理平台,机器学习任务管理与调度层作为平台的核心模块。平台应具备高可用、弹性伸缩、任务监
- DeepSeek×博云AIOS:突破算力桎梏,开启AI普惠新纪元
deepseek
背景在全球人工智能技术高速迭代的背景下,算力成本高企、异构资源适配复杂、模型部署效率低下等问题,始终是制约企业AI规模化应用的关键。DeepSeek以创新技术直击产业痛点,而博云先进算力管理平台AIOS的全面适配,则为这一技术落地提供了坚实底座。两者的深度融合,正在重塑AI产业化的技术范式。DeepSeek:算法创新定义AI新范式DeepSeek凭借技术突破,为AI领域树立了新标杆:DeepSee
- 【python数据挖掘之numpy】-数组及对象属性和数据转换
sc.溯琛
python数据挖掘numpy
Numpy是一个Python库,用于处理多维数组和矩阵,以及针对这些数组执行数学运算的函数。它提供了高效的数组对象和相关的操作,可以用于快速处理大量数据。Numpy的主要功能包括:创建数组、数组运算、数组索引和切片、线性代数、随机数生成等。Numpy在科学计算、数据分析、机器学习等领域都广泛应用。tips:(本博文在jupyter中实训)目录一、创建数组对象1.array()函数来创建数组的对象2
- 《基于WebGL的matplotlib三维可视化性能调优》——让大规模3D数据流畅运行在浏览器端!
Eqwaak00
matplotlibwebglmatplotlib3d开发语言python科技
引言:当科学计算遇见浏览器革命传统三维可视化在浏览器中面临百万级数据点时往往力不从心,每秒帧数(FPS)断崖式下跌。本文将解锁matplotlib与WebGL的融合之道,通过GPU加速渲染+数据压缩算法+计算负载转移三大杀招,实现浏览器端千万级粒子系统60FPS流畅交互。一、WebGL渲染引擎架构设计1.1传统渲染管线瓶颈分析mermaid:graphTDA[CPU数据准备]-->B[主线程传输]
- 中国海洋大学计算机复试上机汇总
来点小烧烤吗
C++机试C语言c++算法
海大历年上机(2009-2019年)试题分类及解答,因精力有限,算法设计中标注TBD的为直接摘抄网上已有答案,未做验证,如有问题可留言。2021复试大纲F0211程序设计实践一、考试性质程序设计实践是计算机科学与技术(0812Z1保密科学与技术除外)、软件工程学术学位硕士研究生,以及电子信息(085400)类别(计算机技术与软件工程方向)专业学位硕士研究生招生考试复试的专业实践科目。二、考查目标要
- AI生成的web框架 包含前后端 k8s管理等
LCY133
人工智能前端kubernetes
好的,我现在需要根据用户提供的技术栈来设计一个Web平台的搭建方案。用户提到的技术包括前端、后端、算法,GitLab、Jenkins,阿里云ACK和ECS,MongoDB、Redis,Docker、K8s、Nginx。我需要综合考虑这些技术的整合,确保整个架构的高效、可靠和可扩展。首先,用户之前已经得到了一个架构方案,现在可能希望进一步细化或者调整。我需要回顾之前的方案,看看是否有遗漏或可以优化的
- 【蓝桥杯】前缀和与数学(持续更新~~~)
「已注销」
蓝桥杯算法
PREFACE欢迎各位→点赞+收藏⭐+评论系列专栏:蓝桥杯本专栏涉及到的知识点或者题目是算法专栏的补充与应用种一棵树最好是十年前其次是现在前缀和一维前缀和k倍区间给定一个长度为N的数列,A1,A2,…AN,如果其中一段连续的子序列Ai,Ai+1,…Aj之和是K的倍数,我们就称这个区间[i,j]是K倍区间。你能求出数列中总共有多少个K倍区间吗?输入格式第一行包含两个整数N和K。以下N行每行包含一个整
- 北航计算机2014复试上机题,北航计算机系考研复试上机真题及答
余思
北航计算机2014复试上机题
北航计算机系考研复试上机真题及答(29页)本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦!19.90积分Kao400.com出品侵权必究北京航空航天大学计算机系考研复试06-‐12上机真题及答案复试上机指导复试上机指导1.1.本真题只是提供辅助作用,关键还是研友平时动手能力本真题只是提供辅助作用,关键还是研友平时动手能力练练习和对算法、习和对算法、数据结构的理
- 历年湖南大学计算机复试上机真题
猿六凯
考研算法
历年湖南大学计算机复试机试真题在线评测:https://app2098.acapp.acwing.com.cn/杨辉三角形题目描述提到杨辉三角形。大家应该都很熟悉。这是我国宋朝数学家杨辉在公元1261年著书《详解九章算法》提出的。111121133114641151010511615201561我们不难其规律:S1:这些数排列的形状像等腰三角形,两腰上的数都是1S2:从右往左斜着看,第一列是1,1
- 常见加密软件厂商的参数对比
大刘讲IT
安全网络安全
本文主要介绍主要的加密软件的一些公开资料的对比,不做任何价值推断和评价,请根据企业实际的需求进行合理评估选择。一、核心加密机制对比1.算法架构与密钥管理IP-Guard亿赛通天锐绿盾迅软DSE文件创建厂商策略触发式AES-256加密全生命周期SM4加密智能分类AES+SM4混合加密行为触发动态密钥轮换分布式密钥池集中式密钥服务器双因子认证+分片存储量子密钥预分发试验维度IP-Guard亿赛通天锐绿
- 强化学习实践 openai gymnasium CartPole-v1 DQN算法实现
abstcol
强化学习深度学习机器学习神经网络
文章目录前言DQN简介环境简介任务实现说开来去我的Github实现:gym(GitHub)本篇博客主要是个人实现过程的主观感受,如果想要使用模型可以直接去GitHub仓库,注释完善且规范。觉得有用请给我点个star!前言最近在学习强化学习,大致过了一遍强化学习的数学原理(视频)。视频讲的很好,但是实践的部分总是感觉有点匮乏(毕竟解决gridworld方格世界(GitHub)的问题的很难给人特别大的
- 神经网络:人工智能的核心技术
m0_75126181
人工智能神经网络深度学习
神经网络简介神经网络是一种模仿生物神经系统的计算模型,由大量相互连接的神经元组成。它通过学习大量的数据来完成复杂的模式识别和决策任务,是当前人工智能和机器学习领域最重要的技术之一。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理和特征提取,输出层产生最终结果。神经元之间通过带权重的连接相互作用,通过调整这些权重来实现学习过程。神经网络的工作原理神经网络的工作原
- 好数——前缀和思想(题目分享)
Exhausted、
算法OJ算法c++
今天我的舍友去参加“传智杯”广东省的省赛,跟我说了这样一道题,他说他想不出来怎么去优化代码,怎么做都是套用两层for循环超时,下面我就根据题意,使用前缀和的算法去优化一下思路,题目本身是不难的,请看思路:题意:示例输入:2512345412141618203115224135输出:211解释:对于第一组数组[1,2,3,4,5]:下标[1,5][1,5]范围内的“好数”是22和44,共22个。对于
- 设计稿转代码技术原理深度解析
寒鸦xxx
科技研究所css前端
一、设计稿转代码技术概述1.历史来源设计稿转代码(DesigntoCode,D2C)技术起源于低代码运动和设计系统的普及。早期前端开发依赖手工编码还原设计稿,效率低下且易出错。2010年代,随着Figma、Sketch等矢量设计工具的标准化,其基于JSON的结构化数据存储(如Figma的节点树)为自动化转码奠定了基础。2018年后,阿里Imgcook、微软Sketch2Code等工具首次将AI算法
- 数据结构与算法必知基础知识
程序员bigsai
文章精选数据结构与算法数据结构算法数据结构与算法
原创公众号:bigsai文章已收录在全网都在关注的数据结构与算法学习仓库欢迎star前言数据结构与算法是程序员内功体现的重要标准之一,且数据结构也应用在各个方面,业界更有程序=数据结构+算法这个等式存在。各个中间件开发者,架构师他们都在努力的优化中间件、项目结构以及算法提高运行效率和降低内存占用,在这里数据结构起到相当重要的作用。此外数据结构也蕴含一些面向对象的思想,故学好掌握数据结构对逻辑思维处
- 【数据结构与算法】试卷一
Want595
C语言数据结构与算法算法数据结构链表
目录试卷一1.选择题2.填空题3.判断题其他试卷试卷一1.选择题1.计算机算法指的是()A.计算方法B.排序方法C.解决问题的有限运算序列D.调度方法2.表达式a*(b+c)-d的后缀表达式是()A.abcd+-B.abc+*d-C.abc*+d-D.-+*abcd3.一个栈的入栈序列是a,b,c,d,e,则栈的不可能的输出序列是()A.edcbaB.decbaC.dceabD.abcde4.非空
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio