异常检测实战应用案例精讲-【工具篇】时序异常检测TODS

前言 

时间序列异常值检测旨在识别数据中意外或罕见的实例。作为数据分析最重要的任务之一,异常值检测在时间序列数据上有多种应用,例如欺诈检测、故障检测和网络安全攻击检测。例如,雅虎  和微软 已经建立了自己的时间序列异常值检测服务来监控他们的业务数据并触发异常值警报。在时间序列数据上,异常值可以分为三种情况:逐点异常值、模式(集体)异常值和系统异常值。

TODS是一个全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算法以及让人类专家来校准系统。该系统可以处理三种常见的时间序列异常检测场景:点的异常检测(异常是时间点)、模式的异常检测(异常是子序列)、系统的异常检测(异常是时间序列的集合)。TODS提供了一系列相应的算法。异常检测实战应用案例精讲-【工具篇】时序异常检测TODS_第1张图片

算法原理

当时间序列中存在潜在的系统故障或小故障时,通常会出现逐点异常值。这种异常值存在于全局(

你可能感兴趣的:(人工智能)