卷积神经网络的研究的最新进展引发了人们完善立体匹配重建热情。从概念看,基于学习算法能够捕获全局的语义信息,比如基于高光和反射的先验条件,便于得到更加稳健的匹配。
目前已经探求一些两视图立体匹配,用神经网络替换手工设计的相似性度量或正则化方法。这些方法展现出更好的结果,并且逐步超过立体匹配领域的传统方法。
事实上,立体匹配任务完全适合使用CNN,因为图像对是已经过修正过的,因此立体匹配问题转化为水平方向上逐像素的视差估计。
与双目立体匹配不同的是,MVS的输入是任意数目的视图,这是深度学习方法需要解决的一个棘手的问题。
而且只有很少的工作意识到该问题,比如SurfaceNet事先重建彩色体素立方体,将所有像素的颜色信息和相机参数构成一个3D代价体,所构成的3D代价体即为网络的输入。
然而受限于3D代价体巨大的内存消耗,SurfaceNet网络的规模很难增大:SurfaceNet运用了一个启发式的“分而治之”的策略,对于大规模重建场景则需要花费很长的时间。
谷歌人工智能写作项目:神经网络伪原创
这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型文案狗。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。
此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
作者:杨延生链接:来源:知乎著作权归作者所有,转载请联系作者获得授权。"深度学习"是为了让层数较多的多层神经网络可以训练,能够work而演化出来的一系列的 新的结构和新的方法。
新的网络结构中最著名的就是CNN,它解决了传统较深的网络参数太多,很难训练的问题,使用了逗局部感受野地和逗权植共享地的概念,大大减少了网络参数的数量。
关键是这种结构确实很符合视觉类任务在人脑上的工作原理。新的结构还包括了:LSTM,ResNet等。
新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout, BN等)。
这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。
---------------------- 下面是原答案 ------------------------从广义上说深度学习的网络结构也是多层神经网络的一种。
传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。
而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。
具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。
输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。
特征是由网络自己选择。
用局部连接而不是全连接,同时权值共享。
局部连接的概念参考局部感受域,即某个视神经元仅考虑某一个小区域的视觉输入,因此相比普通神经网络的全连接层(下一层的某一个神经元需要与前一层的所有节点连接),卷积网络的某一个卷积层的所有节点只负责前层输入的某一个区域(比如某个3*3的方块)。
这样一来需要训练的权值数相比全连接而言会大大减少,进而减小对样本空间大小的需求。权值共享的概念就是,某一隐藏层的所有神经元共用一组权值。这两个概念对应卷积层的话,恰好就是某个固定的卷积核。
卷积核在图像上滑动时每处在一个位置分别对应一个“局部连接”的神经元,同时因为“权值共享”的缘故,这些神经元的参数一致,正好对应同一个卷积核。
顺便补充下,不同卷积核对应不同的特征,比如不同方向的边(edge)就会分别对应不同的卷积核。
激活函数f(x)用ReLU的话避免了x过大梯度趋于0(比如用sigmoid)而影响训练的权值的情况(即Gradient Vanishing)。同时结果会更稀疏一些。
池化之后(例如保留邻域内最大或采纳平均以舍弃一些信息)一定程度也压制了过拟合的情况。
综述总体来说就是重复卷积-relu 来提取特征,进行池化之后再作更深层的特征提取,实质上深层卷积网络的主要作用在于特征提取。
最后一层直接用softmax来分类(获得一个介于0~1的值表达输入属于这一类别的概率)。
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
[1] 它包括卷积层(alternating convolutional layer)和池层(pooling layer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。
20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。
现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。
其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。