基于Python使用线性回归和神经网络模型进行预测

公路运量主要包括公路客运量和公路货运量两个方面。根据研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,表5-11给出了某个地区20年的公路运量相关数据。根据相关部门数据,该地区2010年和2011年的人数分别为73.39万和75.55万,机动车数量分别为3.9635万辆和4.0975万辆,公路面积分别为0.9880万平方千米和1.0268万平方千米。请利用BP神经网络预测该地区2010年和2011年的公路客运量和公路货运量。
表5-11 运力数据表
年份 人数 机动车数量 公路面积 公里客运量 公里货运量
1990 20.55 0.6 0.09 5126 1237
1991 22.44 0.75 0.11 6217 1379
1992 25.37 0.85 0.11 7730 1385
1993 27.13 0.9 0.14 9145 1399
1994 29.45 1.05 0.2 10460 1663
1995 30.1 1.35 0.23 11387 1714
1996 30.96 1.45 0.23 12353 1834
1997 34.06 1.6 0.32 15750 4322
1998 36.42 1.7 0.32 18304 8132
1999 38.09 1.85 0.34 19836 8936
2000 39.13 2.15 0.36 21024 11099
2001 39.99 2.2 0.36 19490 11203
2002 41.93 2.25 0.38 20433 10524
2003 44.59 2.35 0.49 22598 11115
2004 47.3 2.5 0.56 25107 13320
2005 52.89 2.6 0.59 33442 16762
2006 55.73 2.7 0.59 36836 18673
2007 56.76 2.85 0.67 40548 20724
2008 59.17 2.95 0.69 42927 20803
2009 60.63 3.1 0.79 43462 21804
注:数据取自《Matlab在数学建模中的应用(第2版)》,卓金武,第134页。
基于Python使用线性回归和神经网络模型进行预测_第1张图片

#1.数据获取
import pandas as pd
data = pd.read_excel('运力数据表.xlsx')
x = data.iloc[:20,:4]
y = data.iloc[:20,4:]
#2.导入线性回归模块,简称为LR
from sklearn.linear_model import LinearRegression as LR
lr = LR()             #创建线性回归模型类
lr.fit(x,y)         #拟合
slr=lr.score(x,y)   #判定系数 R^2
c_x=lr.coef_         #x对应的回归系数
c_b=lr.intercept_   #回归系数常数项
#3.预测
x1 = data.iloc[20:,:4]
r1=lr.predict(x1)    #采用自带函数预测
#print('x回归系数为:',c_x)
#print('回归系数常数项为:',c_b)
#print('判定系数为:',slr)
#print('样本预测值为:',r1)

n=list(data["公里客运量(万人)"])
n.extend(r1[:,0])
num=pd.DataFrame(n).dropna()

g=list(data["公里货运量(万吨)"])
g.extend(r1[:,1])
gravity=pd.DataFrame(g).dropna()

import pandas as pd
import matplotlib.pyplot as plt  #导入绘图库中的pyplot模块,并且简称为plt

#构造绘图所需的横轴数据列和纵轴数据列
#在figure界面上绘制线性图
plt.rcParams['font.sans-serif'] = 'SimHei'     #设置字体为SimHei

plt.figure(1)
plt.plot(data["年份"],num,'r*--')  #红色“*”号连续图,
plt.xlabel('日期')
plt.ylabel('公里客运量(万人')
plt.title('公里客运量(万人)走势图')
plt.xticks(data["年份"],rotation = 45)
plt.savefig('myfigure1')

plt.figure(2)
plt.plot(data["年份"],gravity,'b*--')  #红色“*”号连续图,
plt.xlabel('日期')
plt.ylabel('公里货运量(万吨)')
plt.title('公里货运量(万吨)走势图')
plt.xticks(data["年份"],rotation = 45)
plt.savefig('myfigure2')


from sklearn.neural_network import MLPRegressor 
clf = MLPRegressor(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=8, random_state=1) 
clf.fit(x, y);   
rv=clf.score(x,y)
r2=clf.predict(x1)   
print('样本预测值为:',r2)

n2=list(data["公里客运量(万人)"])
n2.extend(r2[:,0])
num2=pd.DataFrame(n2).dropna()

g2=list(data["公里货运量(万吨)"])
g2.extend(r2[:,1])
gravity2=pd.DataFrame(g2).dropna()

结果显示:
基于Python使用线性回归和神经网络模型进行预测_第2张图片

你可能感兴趣的:(Python,神经网络,线性回归,机器学习)