- 高效批量单词翻译工具的设计与应用
本文还有配套的精品资源,点击获取简介:在信息技术飞速发展的今天,批量单词翻译工具通过计算机的数据处理能力,大大提高了语言学习和文字处理的效率。用户通过简单输入单词列表到一个文本文件,并运行翻译程序,即可获得翻译结果并保存至指定文件。该工具集成了内置或外部翻译引擎,利用自然语言处理技术实现快速准确的翻译,并可能提供词性识别等附加功能。尽管机器翻译无法完全取代人工校对,但它为用户提供了一种高效的翻译解
- 深度学习模型表征提取全解析
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pythonembedding语言模型
模型内部进行表征提取的方法在自然语言处理(NLP)中,“表征(Representation)”指将文本(词、短语、句子、文档等)转化为计算机可理解的数值形式(如向量、矩阵),核心目标是捕捉语言的语义、语法、上下文依赖等信息。自然语言表征技术可按“静态/动态”“有无上下文”“是否融入知识”等维度划分一、传统静态表征(无上下文,词级为主)这类方法为每个词分配固定向量,不考虑其在具体语境中的含义(无法解
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- GPT实操——利用GPT创建一个应用
狗木马
深度学习gpt-3gpt
功能描述信息查询:用户可以询问各种问题,如天气、新闻、股票等,机器人会返回相关信息。任务执行:用户可以要求机器人执行一些简单的任务,如设置提醒、发送邮件等。情感支持:机器人可以与用户进行情感交流,提供安慰和支持。个性化设置:用户可以自定义机器人的回复风格和偏好。技术栈前端:React.js后端:Node.js+Express数据库:MongoDB自然语言处理:OpenAIGPT-3API其他工具:
- Python爬虫实战:使用最新技术爬取新华网新闻数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy音视频
一、前言在当今信息爆炸的时代,网络爬虫技术已经成为获取互联网数据的重要手段。作为国内权威新闻媒体,新华网每天发布大量高质量的新闻内容,这些数据对于舆情分析、市场研究、自然语言处理等领域具有重要价值。本文将详细介绍如何使用Python最新技术构建一个高效、稳定的新华网新闻爬虫系统。二、爬虫技术选型2.1技术栈选择在构建新华网爬虫时,我们选择了以下技术栈:请求库:httpx(支持HTTP/2,异步请求
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 从RNN循环神经网络到Transformer注意力机制:解析神经网络架构的华丽蜕变
熊猫钓鱼>_>
神经网络rnntransformer
1.引言在自然语言处理和序列建模领域,神经网络架构经历了显著的演变。从早期的循环神经网络(RNN)到现代的Transformer架构,这一演变代表了深度学习方法在处理序列数据方面的重大进步。本文将深入比较这两种架构,分析它们的工作原理、优缺点,并通过实验结果展示它们在实际应用中的性能差异。2.循环神经网络(RNN)2.1基本原理循环神经网络是专门为处理序列数据而设计的神经网络架构。RNN的核心思想
- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- bert中 [CLS] 和 [SEP] 表示什么意思?
[CLS]和[SEP]是BERT中的两个特殊标记符号,在BERT的输入文本中起到特殊的作用。[CLS]是"classification"的缩写,在文本分类任务中,它通常表示句子或文档的开头。在BERT中,[CLS]对应着输入文本中第一个词的词向量,输出层中的第一个神经元通常会被用来预测文本的类别。[SEP]是"separator"的缩写,它通常表示句子或文档的结尾。在BERT中,[SEP]对应着输
- 数据安全审计平台的三大关键技术:日志分析、行为监测与智能告警
KKKlucifer
安全算法
在数字化浪潮中,数据安全审计是企业守护核心资产的“瞭望塔”。通过日志分析、行为监测、智能告警三大技术,数据安全审计平台构建起“全流程监控-异常识别-快速响应”的闭环,为数据安全筑牢防线。以下从技术原理、实践价值与行业应用展开解析。日志分析:数据安全的“DNA图谱”1.多源日志融合技术实现:通过Agent采集操作系统、数据库、网络设备等200+日志源,利用正则表达式、NLP技术解析非结构化日志(如“
- 新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
趋势科技安全分析师发现,一个代号为BERT(内部追踪名WaterPombero)的新型勒索软件组织正在亚洲、欧洲和美国展开多线程攻击。该组织主要针对医疗保健、科技和会展服务行业,其活动范围显示其正成为勒索软件生态中的新兴威胁力量。攻击技术分析在Windows系统中,BERT通过PowerShell加载器(start.ps1)实施攻击,该脚本会执行以下操作:禁用WindowsDefender防火墙和
- Ntfs!LfsReadRestart函数和Ntfs!_LFCB->LogHeadBuffer的关系
sitelist
nt4源代码分析LfsReadRestartLogHeadBufferRESTART_PAGE_HERT_PAGE_HEADER
Ntfs!LfsReadRestart函数和Ntfs!_LFCB->LogHeadBuffer的关系第0部分:////RememberthislogfileintheLfcb.//ThisLfcb->FileObject=LogFile;SetFlag(ThisLfcb->Flags,(LFCB_READ_FIRST_RESTART|LFCB_READ_SECOND_RESTART));if(Lf
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- AIGC与自动驾驶:文心一言的车载交互设计
AI天才研究院
ChatGPT实战计算AgenticAI实战AIGC自动驾驶文心一言ai
AIGC与自动驾驶:文心一言的车载交互设计关键词:AIGC、自动驾驶、车载交互、文心一言、自然语言处理、多模态交互、用户体验摘要:本文深入探讨人工智能生成内容(AIGC)技术在自动驾驶领域的创新应用,特别是百度文心一言如何重构车载交互体验。通过解析文心一言的核心技术架构、多模态融合算法、场景化交互模型,结合具体代码实现和数学模型,揭示其在语音交互、情境理解、个性化服务等场景中的技术优势。同时通过项
- NLP-D7-李宏毅机器学习---X-Attention&&GAN&BERT&GPT
甄小胖
机器学习自然语言处理机器学习bert
—0521今天4:30就起床了!真的是迫不及待想看新的课程!!!昨天做人脸识别系统的demo查资料的时候,发现一个北理的大四做cv的同学,差距好大!!!我也要努力呀!!不是比较,只是别人可以做到这个程度,我也一定可以!!!要向他学习!!!开始看课程啦!-----0753看完了各种attention,由于attention自己计算的限制,当N很大的时候会产生计算速度问题,从各种不同角度(人工知识输入
- PyTorch 在 Python 自然语言处理中的运用
Python编程之道
Python编程之道pythonpytorch自然语言处理ai
PyTorch在Python自然语言处理中的运用关键词:PyTorch,Python,自然语言处理,深度学习,文本分类,情感分析摘要:本文全面探讨了PyTorch在Python自然语言处理(NLP)领域的运用。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着详细阐述了核心概念,如词嵌入、循环神经网络等,并给出了相应的原理示意图和流程图。深入讲解了核心算法原理,结合Python代码进行详细
- 后端领域的自然语言处理技术应用
大厂资深架构师
SpringBoot开发实战自然语言处理easyui人工智能ai
后端领域的自然语言处理技术应用关键词:后端领域、自然语言处理、技术应用、算法原理、实际案例摘要:本文聚焦于后端领域中自然语言处理技术的应用。首先介绍了相关背景,包括目的范围、预期读者等。接着阐述核心概念与联系,通过文本示意图和Mermaid流程图展示其原理和架构。详细讲解了核心算法原理并给出Python源代码示例,同时介绍了数学模型和公式。通过项目实战,展示代码实际案例并进行详细解释。分析了自然语
- 量子计算的数学地基:解码希尔伯特空间的魔法
牧之112
量子计算
在科技圈,“量子计算”早已不是陌生的名词。从谷歌的“量子霸权”实验到IBM的量子云服务,从药物研发的分子模拟到密码学的革命性突破,量子计算正以颠覆式的姿态重塑着人类对计算的认知。但在这些令人惊叹的应用背后,藏着一个关键的数学基石——希尔伯特空间(HilbertSpace)。它像一片隐形的“量子舞台”,支撑着量子比特的叠加、纠缠与计算,是理解量子计算本质绕不开的概念。一、从“普通空间”到“量子空间”
- Char Studio 使用入门:高效构建企业级对话系统的实战指南
charles666666
人工智能产品经理语言模型自然语言处理架构
数字化浪潮推动下,企业与用户的交互模式正经历深刻变革,对话系统作为核心交互手段,其重要性日益凸显。然而,众多企业在构建对话系统时,却深陷诸多困境,难以自拔。一、开篇痛点场景:企业对话系统开发的典型困境企业在自行开发对话系统时,往往面临预算超支、周期漫长以及维护成本居高不下等问题。开发团队需要投入大量时间和精力进行底层技术架构的搭建,例如自然语言处理算法的研究、对话逻辑的设计等,这不仅消耗了大量的人
- VIT视觉
妄想成为master
opencv目标检测机器学习数据挖掘语音识别人工智能计算机视觉
VisionTransformer视觉和语言(Vision-Language)NLPrompt:Noise-LabelPromptLearningforVision-LanguageModelsPaper:https://arxiv.org/abs/2412.01256Code:GitHub-qunovo/NLPromptPhysVLM:EnablingVisualLanguageModelsto
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- 中文大模型的技术债问题
大鹏的NLP博客
大模型transformer大模型
中文大模型的技术债问题摘要随着中文大语言模型(LargeLanguageModels,LLMs)在自然语言处理(NLP)领域的广泛应用,其研发和部署过程中积累的“技术债”(TechnicalDebt)问题日益突出。本文系统性地分析了中文大模型在数据采集、预训练、微调、评估与部署等生命周期各阶段产生的技术债类型,包括代码复杂性、数据隐患、训练流程依赖、工具链碎片化、模型解释性差、隐性资源耦合等问题,
- python transformers库笔记(BertForTokenClassification类)
夏末蝉未鸣01
自然语言处理pythontransformer自然语言处理
BertForTokenClassification类BertForTokenclassification类是HuggingFacetransformers库中专门为基于BERT的序列标注任务(如命名实体识别NER、词性标注POS)设计的模型类。它在BERT的基础上添加了一个线性分类层,用于对每个token进行分类。1、特点任务类型:专为Token-level分类设计,即对输入序列中的每一个tok
- AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
AI正在深度重构软件开发的底层逻辑和全生命周期,从需求分析到运维维护的每个环节都产生了范式级变革。以下从技术演进、流程重构和未来趋势三个维度进行系统性分析:一、AI重构软件开发全栈的技术图谱需求工程智能化NLP驱动的需求解析:GPT-4架构实现用户访谈转录自动转化为UML用例图,准确率达89%(微软2023内部数据)情感计算应用:基于BERT的意图识别模型可捕捉用户需求中的隐性情绪,需求变更预测准
- 新手向:中文语言识别的进化之路
自然语言处理(NLP)技术正在以前所未有的速度改变我们与机器的交互方式,而中文作为世界上使用人数最多的语言,其处理技术面临着独特的挑战与机遇。本文将全面剖析中文自然语言识别模型的发展历程、核心技术原理、当前应用现状以及未来发展趋势,带您深入了解这一改变人机交互方式的关键技术。一、中文NLP的特殊挑战:为什么中文处理如此困难?中文自然语言处理面临着一系列西方语言所不具备的特殊挑战,这些挑战直接影响了
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =