OpenCV小项目:自实现 Canny 算子

文章目录

  • 实现步骤
    • 高斯滤波
    • 一阶偏导有限差分计算梯度幅值和方向
      • 计算梯度
      • 计算幅值和相角
    • 非极大值抑制
      • 具体措施
    • 双阈值算法检测和连接边缘
  • 实现代码
  • 实验结果

实现步骤

  • 用高斯滤波器平滑图像
  • 计算滤波后图像梯度的幅值和方向
  • 对梯度幅值应用非极大值抑制,其过程为找出图像梯度中的局部极大值点,把其它非局部极大值点置零以得到细化的边缘
  • 用双阈值算法检测和连接边缘,使用两个阈值 T1 和 T2(T1>T2),T1 用来找到每条线段,T2 用来在这些线段的两个方向上延伸寻找边缘的断裂处,并连接这些边缘

高斯滤波

由高斯滤波器的二维可分性(X 轴与 Y 轴方向进行高斯滤波互不干扰),代码采用两次 1*5 一维高斯滤波器 [ 1 , 4 , 6 , 4 , 1 ] [1, 4, 6, 4, 1] [1,4,6,4,1]对 X、Y 方向分别进行卷积(对 Y 方向需要先转置再卷积,之后再转置回来)以实现 5*5 二维高斯滤波器。由于可将一维高斯滤波器封装为一个函数 SingleGaussFilter,简化了代码量和程序复杂度

一阶偏导有限差分计算梯度幅值和方向

计算梯度

采用算子
OpenCV小项目:自实现 Canny 算子_第1张图片

以实现

P [ y , x ] ≈ 1 2 ( S [ y , x + 1 ] − S [ y , x ] + S [ y + 1 , x + 1 ] − S [ y + 1 , x ] ) P[y, x]\approx \frac{1}{2}(S[y,x+1]-S[y,x]+S[y+1,x+1]-S[y+1,x]) P[y,x]21(S[y,x+1]S[y,x]+S[y+1,x+1]S[y+1,x])

Q [ y , x ] ≈ 1 2 ( S [ y + 1 , x ] − S [ y , x ] + S [ y + 1 , x + 1 ] − S [ y , x + 1 ] ) Q[y, x]\approx \frac{1}{2}(S[y+1,x]-S[y,x]+S[y+1,x+1]-S[y,x+1]) Q[y,x]21(S[y+1,x]S[y,x]+S[y+1,x+1]S[y,x+1])

计算幅值和相角

幅值计算式

M [ y , x ] = P [ y , x ] 2 + Q [ y , x ] 2 M[y, x]=\sqrt{P[y,x]^2+Q[y,x]^2} M[y,x]=P[y,x]2+Q[y,x]2

相角计算式

θ [ y , x ] = a r c t a n Q [ y , x ] P [ y , x ] \theta[y,x]=arctan\frac{Q[y,x]}{P[y,x]} θ[y,x]=arctanP[y,x]Q[y,x]

非极大值抑制

由于得到梯度之后,仍存在双边缘、宽边缘和噪声点等影响,若直接进行阈值分割确定边缘,结果并不理想。为解决宽边缘问题,可以将整条边缘认为是一条山脉,而真边缘则为山脊,故尝试采用局部极大值抑制,只保留 3*3 邻域且特定方向内的极大值,以消除非山脊的山脉影响

具体措施

  • 依据相角 [ − 9 0 ∘ , + 9 0 ∘ ] [-90^\circ,+90^\circ] [90,+90]将梯度角的变化范围减小到圆周的四个扇区之一( [ − 22. 5 ∘ , + 22. 5 ∘ ] [-22.5^\circ,+22.5^\circ] [22.5,+22.5]对应 0 区, [ − 67. 5 ∘ , − 22. 5 ∘ ] [-67.5^\circ,-22.5^\circ] [67.5,22.5]对应 1 区, [ + 22. 5 ∘ , + 67. 5 ∘ ] [+22.5^\circ,+67.5^\circ] [+22.5,+67.5]对应 3 区, [ − 9 0 ∘ , − 67. 5 ∘ ] [-90^\circ,-67.5^\circ] [90,67.5] [ + 67. 5 ∘ , + 9 0 ∘ ] [+67.5^\circ,+90^\circ] [+67.5,+90]对应 2 区),而每一个扇区对应着当前点 8 邻域的 4 个方向
  • 将每一点与沿着梯度线方向的两个象素比较,若当前点梯度值 ≥ \geq 沿梯度线的两个相邻象素梯度值,则令保留当前点不变;否则,置 0

双阈值算法检测和连接边缘

由于设置单一阈值,在调节阈值大小的同时,真实边缘的增多往往伴随着虚假边缘和噪声点的增多,而将阈值提高减少虚假边缘和噪声点的同时,会造成边缘轮廓丢失的问题。为解决这个矛盾,采用双阈值分割算法,通过低阈值将所有可能边缘检测出来,利用高阈值检测出所有真边缘(可能有部分轮廓丢失),则可以利用高阈值图像作为种子点,索引出所有在低阈值图像上的所有相邻点,以补全高阈值图像,来实现抑制噪声和虚假边缘,同时减少真边缘丢失的目的

实现代码


#include 
#include 
#include 
#include 
#include 

using namespace cv;
using namespace std;

int MyCanny(const Mat gray_image, Mat &fin_image, int high_threshold, int low_threshold);
void GaussFilter(const Mat orig_image, Mat& gauss_image);
void SingleGaussFilter(Mat orig_image, Mat& single_gauss_image);
void Gradient(Mat image, Mat& X, Mat& Y);
void SingleGradient(Mat image, Mat& single_gradient);
void AmpliPhase(Mat X, Mat Y, Mat &ampli, Mat &phase);
void NonMaximaSuppression(Mat ampli, Mat phase, Mat &nms_image);
void DoubleThreshold(Mat image, Mat& high_threshold_image, Mat& low_threshold_image, int high_threshold, int low_threshold);
void EdgeTracking(Mat high_threshold_image, Mat low_threshold_image, Mat &edge_tracking_image);
void SinglePointTracking(Mat &high_threshold_image, Mat &subtract_image, Mat& edge_tracking_image, int row, int col);

int main()
{
    Mat image, gray_image;
    Mat fin_image= Mat::zeros(image.rows, image.cols, CV_8UC1);
    image = imread("c++.jpeg");
    if (image.empty())
    {
        cout << "Could not open or find the image" << endl;
        return -1;
    }
    else
        cvtColor(image, gray_image, CV_RGB2GRAY);
    imshow("gray_image", gray_image);
    imwrite("gray_image.jpg", gray_image);
    int high_threshold=100; // 120
    int low_threshold=20; // 50

    MyCanny(gray_image, fin_image, high_threshold, low_threshold);
    Mat cvCanny_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);

    Canny(gray_image, cvCanny_image, high_threshold, low_threshold);
    imshow("cvCanny_image", cvCanny_image);
    imwrite("cvCanny_image.jpg", cvCanny_image);

    waitKey(0);
    return 0;
}

int MyCanny(const Mat gray_image, Mat& fin_image, int high_threshold, int low_threshold)
{
    Mat gauss_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);

    // 高斯滤波
    GaussFilter(gray_image, gauss_image);
    imshow("gauss_image", gauss_image);
    imwrite("gauss_image.jpg", gauss_image);

    // X、Y方向梯度计算
    Mat X = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1);
    Mat Y = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1);
    Gradient(gray_image, X, Y);
    Mat temp_X = X.clone();
    temp_X.convertTo(temp_X, CV_8UC1);
    imshow("X", temp_X);
    imwrite("X.jpg", temp_X);
    Mat temp_Y = Y.clone();
    temp_Y.convertTo(temp_Y, CV_8UC1);
    imshow("Y", temp_Y);
    imwrite("Y.jpg", temp_Y);

    // 计算幅值、相角
    Mat ampli = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1);
    Mat phase = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1);
    AmpliPhase(X, Y, ampli, phase);
    Mat temp_ampli = ampli.clone();
    temp_ampli.convertTo(temp_ampli, CV_8UC1);
    imshow("ampli", temp_ampli);
    imwrite("ampli.jpg", temp_ampli);
    Mat temp_phase = phase.clone();
    temp_ampli.convertTo(temp_phase, CV_8UC1);
    imshow("phase", temp_phase);
    imwrite("phase.jpg", temp_phase);

    // 非极大值抑制
    Mat nms_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);
    NonMaximaSuppression(ampli, phase, nms_image);
    nms_image.convertTo(nms_image, CV_8UC1);
    imshow("nms_image", nms_image);
    imwrite("nms_image.jpg", nms_image);


    // 双阈值分割
    Mat high_threshold_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);
    Mat low_threshold_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);
    DoubleThreshold(nms_image, high_threshold_image, low_threshold_image, high_threshold, low_threshold);
    imshow("high_threshold_image", high_threshold_image);
    imwrite("high_threshold_image.jpg", high_threshold_image);
    imshow("low_threshold_image", low_threshold_image);
    imwrite("low_threshold_image.jpg", low_threshold_image);

    // 边缘连接
    Mat edge_tracking_image= Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1);
    EdgeTracking( high_threshold_image,low_threshold_image, edge_tracking_image);
    imshow("edge_tracking_image", edge_tracking_image);
    imwrite("edge_tracking_image.jpg", edge_tracking_image);

    return 0;
}

void GaussFilter(const Mat orig_image, Mat &gauss_image)
{
    Mat temp_gauss_image = Mat::zeros(orig_image.rows, orig_image.cols, CV_8UC1);
    SingleGaussFilter(orig_image, temp_gauss_image);

    Mat t_temp_gauss_image = temp_gauss_image.t();
    Mat temp_fin_gauss_image= Mat::zeros(t_temp_gauss_image.rows, t_temp_gauss_image.cols, CV_8UC1);
    SingleGaussFilter(t_temp_gauss_image, temp_fin_gauss_image);
    gauss_image = temp_fin_gauss_image.t();
}

void SingleGaussFilter(Mat orig_image, Mat& single_gauss_image)
{
    int gauss_template[] = {1, 4, 6, 4, 1};
    int template_length = sizeof(gauss_template) / sizeof(gauss_template[0]);
    int total = 0;
    int rows = orig_image.rows;
    int cols = orig_image.cols;


    for (int i = 0; i < template_length; i++)
        total += gauss_template[i];

    for (int i = 0; i < rows; i++)
    {
        uchar* data = orig_image.ptr<uchar>(i);
        for (int j = 0; j < cols; j++)
        {
            int sum = 0;
            for (int k = -int((template_length - 1) / 2); k <= int((template_length - 1) / 2); k++)
            {
                // 边界处理,超出边界的值赋为边界值
                int col = j + k;
                col = col < 0 ? 0 : col;
                col = col >= cols ? cols - 1 : col;
                // 卷积和
                sum += gauss_template[k+ int((template_length - 1) / 2)] * data[col];
            }
            single_gauss_image.ptr<uchar>(i)[j] = sum / total;
        }
    }
}

void Gradient(Mat image, Mat &X, Mat &Y)
{
    Mat t_Y = Mat::zeros(image.cols, image.rows, CV_32FC1);
    Mat t_image = image.t();
    SingleGradient(image, X);
    SingleGradient(t_image, t_Y);
    Y = t_Y.t();
}

void SingleGradient(Mat image, Mat& single_gradient)
{
    int grad_template[2][2] = {{-1,1},{-1,1}};
    int rows = image.rows;
    int cols = image.cols;

    for (int i = 0; i < rows; i++)
    {
        // 读取两行数据
        uchar* image_row[2];
        image_row[0] = image.ptr<uchar>(i);
        image_row[1] = image.ptr<uchar>((i + 1) >= rows ? i:i+1);

        for (int j = 0; j < cols; j++)
        {
            int sum = 0;

            for (int k = 0; k < 2 ; k++)
            {
                // 边界处理,超出边界的值赋为边界值
                int row = i + k;
                row = row >= rows ? rows - 1 : row;
                for (int g = 0; g < 2 ; g++)
                {
                    // 边界处理,超出边界的值赋为边界值
                    int col = j + g;
                    col = col >= cols ? cols - 1 : col;
                    sum += grad_template[k][g] * image_row[k][col];
                }
            }
            single_gradient.ptr<float>(i)[j] = sum / 2;
        }
    }
}

void AmpliPhase(Mat X, Mat Y, Mat &ampli, Mat &phase)
{
    for (int i = 0; i < X.rows; i++)
    {
        float* data_X = X.ptr<float>(i);
        float* data_Y = Y.ptr<float>(i);
        float* data_ampli = ampli.ptr<float>(i);
        float* data_phase = phase.ptr<float>(i);

        for (int j = 0; j < X.cols; j++)
        {
            data_ampli[j] = sqrt(data_X[j]* data_X[j]+ data_Y[j] * data_Y[j]);
            data_phase[j] = atan(data_Y[j] / (data_X[j]>0.000001? data_X[j]:0.000001)) * 180/3.141592;

            if (int(abs(data_phase[j])) > 90)
            {
                cout << int(abs(data_phase[j])) << endl;
                waitKey(0);
            }
        }
    }
}

void NonMaximaSuppression(Mat ampli, Mat phase, Mat& nms_image)
{
    int up = 1;
    int down = 1;
    int left = 1;
    int right = 1;
    for (int i = 1; i < ampli.rows-1; i++)
    {
        float* ampli_data[3];
        ampli_data[0] = ampli.ptr<float>(i-up);
        ampli_data[1] = ampli.ptr<float>(i);
        ampli_data[2] = ampli.ptr<float>(i+down);
        float* temp_phase = phase.ptr<float>(i);
        uchar* temp_nms_image = nms_image.ptr<uchar>(i);

        for (int j = 1; j < ampli.cols-1; j++)
        {
            int temp_single_phase = int(temp_phase[j]);
            // 左右比
            if (temp_single_phase >= -22.5 && temp_single_phase <= 22.5)
            {
                if (ampli_data[1][j] >= ampli_data[1][i-left] && ampli_data[1][j] >= ampli_data[1][i+right])
                {
                    temp_nms_image[j] = uchar(ampli_data[1][j]);
                }
            }
            // 右上左下比
            else if (temp_single_phase < -22.5 && temp_single_phase >= -22.5 - 45)
            {
                if (ampli_data[1][j] >= ampli_data[1-up][j+right] && ampli_data[1][j] >= ampli_data[1 + down][j - left])
                {
                    temp_nms_image[j] = uchar(ampli_data[1][j]);
                }
            }
            // 右下左上比
            else if (temp_single_phase > 22.5 && temp_single_phase <= 22.5 + 45)
            {
                if (ampli_data[1][j] >= ampli_data[1 +down][j + right] && ampli_data[1][j] >= ampli_data[1 - up][j - left])
                {
                    temp_nms_image[j] = uchar(ampli_data[1][j]);
                }
            }
            // 上下比
            else if ((temp_single_phase > 22.5 + 45 && temp_single_phase <= 90) || (temp_single_phase < -22.5 - 45 && temp_single_phase >= -90))
            {
                if (ampli_data[1][j] >= ampli_data[1 - up][j] && ampli_data[1][j] >= ampli_data[1 + down][j ])
                {
                    temp_nms_image[j] = uchar(ampli_data[1][j]);
                }
            }
            else if(0)
            {
                cout << temp_phase[j]<< "error in angles!!!"<<endl;
                waitKey(0);
                return;
            }

        }
    }
}

void DoubleThreshold(Mat image, Mat& high_threshold_image, Mat& low_threshold_image, int high_threshold, int low_threshold)
{
    for (int i = 0; i < image.rows; i++)
    {
        uchar* data = image.ptr<uchar>(i);
        uchar* high_threshold_data = high_threshold_image.ptr<uchar>(i);
        uchar* low_threshold_data = low_threshold_image.ptr<uchar>(i);

        for (int j = 0; j < image.cols; j++)
        {
            high_threshold_data[j] = data[j] > high_threshold ? 255 : 0;
            low_threshold_data[j] = data[j] > low_threshold ? 255 : 0;
        }
    }
}


void EdgeTracking(Mat high_threshold_image, Mat low_threshold_image, Mat &edge_tracking_image)
{
    edge_tracking_image = high_threshold_image.clone();
    Mat subtract_image = low_threshold_image - high_threshold_image;
    imshow("subtract_image ", subtract_image);
    imwrite("subtract_image.jpg", subtract_image);

    for (int i = 0; i < high_threshold_image.rows; i++)
    {
        for (int j = 0; j < high_threshold_image.cols; j++)
        {
            if (high_threshold_image.at<uchar>(i, j) == 255)
            {
                SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image,i,j);
            }
        }
    }
}

void SinglePointTracking(Mat &high_threshold_image,Mat &subtract_image,Mat &edge_tracking_image,int row, int col)
{
    // 右点
    if ((col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row, col+1) == 255))
    {
        edge_tracking_image.at<uchar>( row, col+1) = 255;
        subtract_image.at<uchar>(row, col + 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row,  col + 1);
    }
    // 右下点
    if ((row + 1 <= subtract_image.rows - 1) && (col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row + 1 , col + 1) == 255))
    {
        edge_tracking_image.at<uchar>(row + 1, col + 1) = 255;
        subtract_image.at<uchar>(row+1, col + 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col + 1);
    }
    // 下点
    if ((row + 1 <= subtract_image.rows - 1) && (subtract_image.at<uchar>(row + 1, col ) == 255))
    {
        edge_tracking_image.at<uchar>(row + 1, col) = 255;
        subtract_image.at<uchar>(row+1, col ) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col);
    }
    // 左下点
    if ((row + 1 <= subtract_image.rows-1)&&(col-1 >= 0) && (subtract_image.at<uchar>(row+1,col-1) == 255))
    {
        edge_tracking_image.at<uchar>(row + 1, col - 1) = 255;
        subtract_image.at<uchar>(row+1, col - 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col - 1);
    }
    // 左点
    if ((col - 1 >= 0) && (subtract_image.at<uchar>( row,col-1) == 255))
    {
        edge_tracking_image.at<uchar>(row, col - 1) = 255;
        subtract_image.at<uchar>(row, col - 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row, col - 1);
    }
    // 左上点
    if ((row-1>=0) && (col-1>=0) && (subtract_image.at<uchar>(row-1,col - 1) == 255))
    {
        edge_tracking_image.at<uchar>(row - 1, col - 1) = 255;
        subtract_image.at<uchar>(row-1, col - 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col - 1);
    }
    // 上点
    if ( (row - 1 >= 0) && (subtract_image.at<uchar>( row-1,col) == 255))
    {
        edge_tracking_image.at<uchar>(row - 1, col) = 255;
        subtract_image.at<uchar>(row-1, col) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col);
    }
    // 右上点
    if ((row -1 >= 0) && (col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row - 1,col + 1) == 255))
    {
        edge_tracking_image.at<uchar>(row - 1, col + 1) = 255;
        subtract_image.at<uchar>(row-1, col + 1) = 0;
        SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col + 1);
    }
}

实验结果

OpenCV小项目:自实现 Canny 算子_第2张图片

原图

OpenCV小项目:自实现 Canny 算子_第3张图片

灰度图

OpenCV小项目:自实现 Canny 算子_第4张图片

高斯滤波

OpenCV小项目:自实现 Canny 算子_第5张图片

X方向梯度

OpenCV小项目:自实现 Canny 算子_第6张图片

Y方向梯度

OpenCV小项目:自实现 Canny 算子_第7张图片

梯度

OpenCV小项目:自实现 Canny 算子_第8张图片

非极大抑制

OpenCV小项目:自实现 Canny 算子_第9张图片

高阈值梯度图

OpenCV小项目:自实现 Canny 算子_第10张图片

低阈值梯度图

OpenCV小项目:自实现 Canny 算子_第11张图片

低高阈值相减梯度图

OpenCV小项目:自实现 Canny 算子_第12张图片

自己实现的Canny结果

OpenCV小项目:自实现 Canny 算子_第13张图片

你可能感兴趣的:(#,OpenCV,opencv,计算机视觉,人工智能)