LIO-SAM探秘第三章之代码解析(三) --- mapOptmization.cpp (1)

本文阅读的代码为2020年11月1日下载的github的最新master。
如果代码后续更新了请以github为准。

1 main()

可见

int main(int argc, char **argv)
{
    ros::init(argc, argv, "lio_sam");

    mapOptimization MO;

    ROS_INFO("\033[1;32m----> Map Optimization Started.\033[0m");

    // 两个线程,一边按固定的频率进行回环检测、添加约束边,另外一边进行地图发布和保存
    std::thread loopthread(&mapOptimization::loopClosureThread, &MO);
    std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);

    ros::spin();

    loopthread.join();
    visualizeMapThread.join();

    return 0;
}

2 数据类型

定义了一个新的数据类型,包含 x,y,z,roll,pitch,yaw, intensity, time

/*
* A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
*/
struct PointXYZIRPYT
{
    PCL_ADD_POINT4D
    PCL_ADD_INTENSITY; // preferred way of adding a XYZ+padding
    float roll;
    float pitch;
    float yaw;
    double time;
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new allocators are aligned
} EIGEN_ALIGN16;                    // enforce SSE padding for correct memory alignment

POINT_CLOUD_REGISTER_POINT_STRUCT(PointXYZIRPYT,
                                  (float, x, x)(float, y, y)(float, z, z)(float, intensity, intensity)
                                  (float, roll, roll)(float, pitch, pitch)(float, yaw, yaw)(double, time, time))

typedef PointXYZIRPYT PointTypePose;

3 mapOptimization类

1600多行没注释的代码。。。

3.1 成员变量

class mapOptimization : public ParamServer
{
public:
    // gtsam
    NonlinearFactorGraph gtSAMgraph;
    Values initialEstimate;
    Values optimizedEstimate;
    ISAM2 *isam;
    Values isamCurrentEstimate;
    Eigen::MatrixXd poseCovariance;

    ros::Publisher pubLaserCloudSurround;
    ros::Publisher pubLaserOdometryGlobal;
    ros::Publisher pubLaserOdometryIncremental;
    ros::Publisher pubKeyPoses;
    ros::Publisher pubPath;

    ros::Publisher pubHistoryKeyFrames;
    ros::Publisher pubIcpKeyFrames;
    ros::Publisher pubRecentKeyFrames;
    ros::Publisher pubRecentKeyFrame;
    ros::Publisher pubCloudRegisteredRaw;
    ros::Publisher pubLoopConstraintEdge;

    ros::Subscriber subCloud;
    ros::Subscriber subGPS;
    ros::Subscriber subLoop;

    std::deque<nav_msgs::Odometry> gpsQueue;
    lio_sam::cloud_info cloudInfo;

    vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
    vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
    
    pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D;
    pcl::PointCloud<PointType>::Ptr copy_cloudKeyPoses3D;
    pcl::PointCloud<PointTypePose>::Ptr copy_cloudKeyPoses6D;

    pcl::PointCloud<PointType>::Ptr laserCloudCornerLast;   // corner feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLast;     // surf feature set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner featuer set from odoOptimization
    pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS;   // downsampled surf featuer set from odoOptimization

    pcl::PointCloud<PointType>::Ptr laserCloudOri;
    pcl::PointCloud<PointType>::Ptr coeffSel;

    std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
    std::vector<PointType> coeffSelCornerVec;
    std::vector<bool> laserCloudOriCornerFlag;
    std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
    std::vector<PointType> coeffSelSurfVec;
    std::vector<bool> laserCloudOriSurfFlag;

    map<int, pair<pcl::PointCloud<PointType>, pcl::PointCloud<PointType>>> laserCloudMapContainer;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap;
    pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS;
    pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;

    pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
    pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;

    pcl::VoxelGrid<PointType> downSizeFilterCorner;
    pcl::VoxelGrid<PointType> downSizeFilterSurf;
    pcl::VoxelGrid<PointType> downSizeFilterICP;
    pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization
    
    ros::Time timeLaserInfoStamp;
    double timeLaserInfoCur;

    float transformTobeMapped[6];

    std::mutex mtx;
    std::mutex mtxLoopInfo;

    bool isDegenerate = false;
    Eigen::Matrix<float, 6, 6> matP;

    int laserCloudCornerFromMapDSNum = 0;
    int laserCloudSurfFromMapDSNum = 0;
    int laserCloudCornerLastDSNum = 0;
    int laserCloudSurfLastDSNum = 0;

    bool aLoopIsClosed = false;
    map<int, int> loopIndexContainer; // from new to old
    vector<pair<int, int>> loopIndexQueue;
    vector<gtsam::Pose3> loopPoseQueue;
    vector<gtsam::noiseModel::Diagonal::shared_ptr> loopNoiseQueue;
    deque<std_msgs::Float64MultiArray> loopInfoVec;

    nav_msgs::Path globalPath;

    Eigen::Affine3f transPointAssociateToMap;
    Eigen::Affine3f incrementalOdometryAffineFront;
    Eigen::Affine3f incrementalOdometryAffineBack;
};

3.2 构造函数

    mapOptimization()
    {
        // ISAM2的初始化,没用过。。。
        ISAM2Params parameters;
        parameters.relinearizeThreshold = 0.1;
        parameters.relinearizeSkip = 1;
        isam = new ISAM2(parameters);

        pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
        // 全局地图
        pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
        // 优化后的odom
        pubLaserOdometryGlobal = nh.advertise<nav_msgs::Odometry>("lio_sam/mapping/odometry", 1);
        pubLaserOdometryIncremental = nh.advertise<nav_msgs::Odometry>("lio_sam/mapping/odometry_incremental", 1);
        pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);

        // 订阅特征提取后的cloud_info
        subCloud = nh.subscribe<lio_sam::cloud_info>("lio_sam/feature/cloud_info", 1, &mapOptimization::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
        subGPS = nh.subscribe<nav_msgs::Odometry>(gpsTopic, 200, &mapOptimization::gpsHandler, this, ros::TransportHints().tcpNoDelay());
        subLoop = nh.subscribe<std_msgs::Float64MultiArray>("lio_loop/loop_closure_detection", 1, &mapOptimization::loopInfoHandler, this, ros::TransportHints().tcpNoDelay());

        pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
        pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);
        pubLoopConstraintEdge = nh.advertise<visualization_msgs::MarkerArray>("/lio_sam/mapping/loop_closure_constraints", 1);

        pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
        pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
        pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);

        // 设置降采样的栅格大小,均为0.2
        downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
        downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
        // 设置降采样的栅格大小,surroundingKeyframeDensity = 1.0
        // for surrounding key poses of scan-to-map optimization
        downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity);

        allocateMemory();
    }

    // 指针的初始化
    void allocateMemory()
    {
        cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
        copy_cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
        copy_cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());

        kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());

        laserCloudCornerLast.reset(new pcl::PointCloud<PointType>());   // corner feature set from odoOptimization
        laserCloudSurfLast.reset(new pcl::PointCloud<PointType>());     // surf feature set from odoOptimization
        laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
        laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>());   // downsampled surf featuer set from odoOptimization

        laserCloudOri.reset(new pcl::PointCloud<PointType>());
        coeffSel.reset(new pcl::PointCloud<PointType>());

        laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
        coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
        laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);

        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);

        laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
        laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
        laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());

        kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
        kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());

        for (int i = 0; i < 6; ++i)
        {
            transformTobeMapped[i] = 0;
        }

        matP.setZero();
    }

3.3 点云的回调函数

    // 点云的回调函数
    void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr &msgIn)
    {
        // extract time stamp
        timeLaserInfoStamp = msgIn->header.stamp;
        timeLaserInfoCur = msgIn->header.stamp.toSec();

        // extract info and feature cloud
        cloudInfo = *msgIn;
        pcl::fromROSMsg(msgIn->cloud_corner, *laserCloudCornerLast);
        pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);

        std::lock_guard<std::mutex> lock(mtx);

        static double timeLastProcessing = -1;
        // mappingProcessInterval=0.15, 时间间隔小于0.15秒的雷达数据不进行计算
        if (timeLaserInfoCur - timeLastProcessing >= mappingProcessInterval) 
        {
            timeLastProcessing = timeLaserInfoCur;

            updateInitialGuess();

            extractSurroundingKeyFrames();

            downsampleCurrentScan();

            scan2MapOptimization();

            saveKeyFramesAndFactor();

            correctPoses();

            publishOdometry();

            publishFrames();
        }
    }

3.4 回环检测线程

    void loopClosureThread()
    {
        if (loopClosureEnableFlag == false)
            return;

        ros::Rate rate(loopClosureFrequency);
        while (ros::ok())
        {
            rate.sleep();
            performLoopClosure();
            visualizeLoopClosure();
        }
    }

3.5 地图线程

    void visualizeGlobalMapThread()
    {
        ros::Rate rate(0.2);
        while (ros::ok())
        {
            rate.sleep();
            publishGlobalMap();
        }

        if (savePCD == false)
            return;

        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files ..." << endl;
        // create directory and remove old files;
        savePCDDirectory = std::getenv("HOME") + savePCDDirectory;
        int unused = system((std::string("exec rm -r ") + savePCDDirectory).c_str());
        unused = system((std::string("mkdir ") + savePCDDirectory).c_str());
        // save key frame transformations
        pcl::io::savePCDFileASCII(savePCDDirectory + "trajectory.pcd", *cloudKeyPoses3D);
        pcl::io::savePCDFileASCII(savePCDDirectory + "transformations.pcd", *cloudKeyPoses6D);
        // extract global point cloud map
        pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
        for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++)
        {
            *globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
            *globalSurfCloud += *transformPointCloud(surfCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
            cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
        }
        // down-sample and save corner cloud
        downSizeFilterCorner.setInputCloud(globalCornerCloud);
        downSizeFilterCorner.filter(*globalCornerCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudCorner.pcd", *globalCornerCloudDS);
        // down-sample and save surf cloud
        downSizeFilterSurf.setInputCloud(globalSurfCloud);
        downSizeFilterSurf.filter(*globalSurfCloudDS);
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudSurf.pcd", *globalSurfCloudDS);
        // down-sample and save global point cloud map
        *globalMapCloud += *globalCornerCloud;
        *globalMapCloud += *globalSurfCloud;
        pcl::io::savePCDFileASCII(savePCDDirectory + "cloudGlobal.pcd", *globalMapCloud);
        cout << "****************************************************" << endl;
        cout << "Saving map to pcd files completed" << endl;
    }

4 雷达回调内的相关函数

4.1 updateInitialGuess()

    // 根据之前保存的位姿,使用odom做位姿的预测,如果imu可用的话再用做姿态的二次变换
    void updateInitialGuess()
    {
        // save current transformation before any processing
        incrementalOdometryAffineFront = trans2Affine3f(transformTobeMapped);

        static Eigen::Affine3f lastImuTransformation;
        // initialization
        if (cloudKeyPoses3D->points.empty())
        {
            // 第一帧点云进来,cloudKeyPoses3D保存的什么?
            transformTobeMapped[0] = cloudInfo.imuRollInit;
            transformTobeMapped[1] = cloudInfo.imuPitchInit;
            transformTobeMapped[2] = cloudInfo.imuYawInit;

            // 是否使用imu的角度进行初始化,默认为不用
            if (!useImuHeadingInitialization) 
                transformTobeMapped[2] = 0;

            // save imu before return
            lastImuTransformation = pcl::getTransformation(0, 0, 0, 
                cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); 
            return;
        }

        // use imu pre-integration estimation for pose guess
        static bool lastImuPreTransAvailable = false;
        static Eigen::Affine3f lastImuPreTransformation;
        // odom可用的话, 使用odom作为初始位姿
        if (cloudInfo.odomAvailable == true)
        {
            Eigen::Affine3f transBack = pcl::getTransformation(cloudInfo.initialGuessX, cloudInfo.initialGuessY, cloudInfo.initialGuessZ,
                                                               cloudInfo.initialGuessRoll, cloudInfo.initialGuessPitch, cloudInfo.initialGuessYaw);
            // 如果是第一个位姿,不做预测
            if (lastImuPreTransAvailable == false)
            {
                lastImuPreTransformation = transBack;
                lastImuPreTransAvailable = true;
            }
            else
            {
                // 使用odom的pose变化做预测
                Eigen::Affine3f transIncre = lastImuPreTransformation.inverse() * transBack;
                Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
                Eigen::Affine3f transFinal = transTobe * transIncre;
                pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
                                                  transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

                lastImuPreTransformation = transBack;

                lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
                return;
            }
        }

        // use imu incremental estimation for pose guess (only rotation)
        // imu可用的话, 使用imu计算一个旋转增量,将之前保存的位姿做姿态的变换
        if (cloudInfo.imuAvailable == true)
        {
            // 根据imu的角度变化量,求得旋转的Affine3f(4*4)
            Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
            // 前一时刻的imu的角度值的逆乘以当前时刻的角度值,等于这一段时间内的角度增量(角度变化量)
            Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;
            // 6*1的向量, 转成Affine3f
            Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
            // 根据角度增量,求得变化后的位姿
            Eigen::Affine3f transFinal = transTobe * transIncre;
            // Affine3f 转向量
            pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
                                              transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);

            // 当前帧imu数据变成上一帧imu数据
            lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
            return;
        }
    }

4.2 extractSurroundingKeyFrames()

    void extractSurroundingKeyFrames()
    {
        // 没有初始化
        if (cloudKeyPoses3D->points.empty() == true)
            return;

        // if (loopClosureEnableFlag == true)
        // {
        //     extractForLoopClosure();
        // } else {
        //     extractNearby();
        // }

        extractNearby();
    }
    
    // 进行关键帧提取
    void extractNearby()
    {
        // 提取cloudKeyPoses3D 附近的点云帧, 放到 surroundingKeyPoses 中
        pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>());
        std::vector<int> pointSearchInd;
        std::vector<float> pointSearchSqDis;

        // create kd-tree
        // extract all the nearby key poses and downsample them
        kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D); 
        kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(), 
            (double)surroundingKeyframeSearchRadius,        // 50m范围内的关键帧
            pointSearchInd, pointSearchSqDis);
        // 将满足要求的点云帧加到 surroundingKeyPoses 中
        for (int i = 0; i < (int)pointSearchInd.size(); ++i)
        {
            int id = pointSearchInd[i];
            surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
        }

        // 对surroundingKeyPoses进降采样, 保存在 surroundingKeyPosesDS
        downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
        downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);

        // also extract some latest key frames in case the robot rotates in one position
        // 把10s内同方向的关键帧也加到surroundingKeyPosesDS中
        int numPoses = cloudKeyPoses3D->size();
        for (int i = numPoses - 1; i >= 0; --i)
        {
            // 10s内的位姿态都加进来
            if (timeLaserInfoCur - cloudKeyPoses6D->points[i].time < 10.0)
                surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
            else
                break;
        }

        extractCloud(surroundingKeyPosesDS);
    }

    // 根据位姿提取出角点与面点,并进行降采样
    void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
    {
        // fuse the map
        laserCloudCornerFromMap->clear();
        laserCloudSurfFromMap->clear();
        for (int i = 0; i < (int)cloudToExtract->size(); ++i)
        {
            // 离cloudKeyPoses3D最后一个点大于50米,不进行特征提取
            if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
                continue;

            // intensity里保存的是这个点的索引 作为key,角点与面点组成的pair作为value
            int thisKeyInd = (int)cloudToExtract->points[i].intensity;
            if (laserCloudMapContainer.find(thisKeyInd) != laserCloudMapContainer.end())
            {
                // transformed cloud available
                *laserCloudCornerFromMap += laserCloudMapContainer[thisKeyInd].first;
                *laserCloudSurfFromMap += laserCloudMapContainer[thisKeyInd].second;
            }
            else
            {
                // transformed cloud not available
                pcl::PointCloud<PointType> laserCloudCornerTemp = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
                pcl::PointCloud<PointType> laserCloudSurfTemp = *transformPointCloud(surfCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
                *laserCloudCornerFromMap += laserCloudCornerTemp;
                *laserCloudSurfFromMap += laserCloudSurfTemp;
                laserCloudMapContainer[thisKeyInd] = make_pair(laserCloudCornerTemp, laserCloudSurfTemp);
            }
        }

        // Downsample the surrounding corner key frames (or map)
        downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
        downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
        laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
        // Downsample the surrounding surf key frames (or map)
        downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
        downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
        laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();

        // clear map cache if too large
        if (laserCloudMapContainer.size() > 1000)
            laserCloudMapContainer.clear();
    }

4.3 downsampleCurrentScan()

    // 对当前雷达的角点与面点以0.2m的格子进行降采样
    void downsampleCurrentScan()
    {
        // Downsample cloud from current scan
        laserCloudCornerLastDS->clear();
        downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
        downSizeFilterCorner.filter(*laserCloudCornerLastDS);
        laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();

        laserCloudSurfLastDS->clear();
        downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
        downSizeFilterSurf.filter(*laserCloudSurfLastDS);
        laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
    }

4.4 scan2MapOptimization()

    // 构建点到平面、点到直线的残差, 用高斯牛顿法进行优化
    void scan2MapOptimization()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        // 降采样后的角点与面点的数量要同时大于阈值才进行优化
        // edgeFeatureMinValidNum 10, surfFeatureMinValidNum 100
        if (laserCloudCornerLastDSNum > edgeFeatureMinValidNum && 
            laserCloudSurfLastDSNum > surfFeatureMinValidNum)
        {
            kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMapDS);
            kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMapDS);

            // 进行30次迭代
            for (int iterCount = 0; iterCount < 30; iterCount++)
            {
                laserCloudOri->clear();
                coeffSel->clear();

                // 点到平面, 点到直线的残差, 这里写法还与aloam有点区别
                // 验证角点与面点是否符合要求
                cornerOptimization();
                surfOptimization();

                // 将2种残差添加到同一个变量中
                combineOptimizationCoeffs();

                if (LMOptimization(iterCount) == true)
                    break;
            }

            // 更新 transformTobeMapped
            transformUpdate();
        }
        else
        {
            ROS_WARN("Not enough features! Only %d edge and %d planar features available.", laserCloudCornerLastDSNum, laserCloudSurfLastDSNum);
        }
    }

4.4.1 cornerOptimization()

    // 验证角点是否符合要求
    void cornerOptimization()
    {
        // 更新当前位姿与地图间位姿变换
        updatePointAssociateToMap();

// 基于OpenMP的共享内存系统的并行编程方法, 减少for循环的执行时间
#pragma omp parallel for num_threads(numberOfCores)
        // 遍历点云, 构建点到直线的约束
        for (int i = 0; i < laserCloudCornerLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudCornerLastDS->points[i];
            // 将点云从雷达坐标系变换到map坐标系
            pointAssociateToMap(&pointOri, &pointSel);
            // 在kdtree中搜索当前点的5个邻近点
            kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0));
            cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0));

            // 只有最近的点都在一定阈值内(1米)才进行计算
            if (pointSearchSqDis[4] < 1.0)
            {
                // 求出这5个邻近点坐标的均值
                float cx = 0, cy = 0, cz = 0;
                for (int j = 0; j < 5; j++)
                {
                    cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
                    cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
                    cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
                }
                cx /= 5;
                cy /= 5;
                cz /= 5;

                // 根据均值计算协方差
                float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
                for (int j = 0; j < 5; j++)
                {
                    float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
                    float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
                    float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;

                    a11 += ax * ax;
                    a12 += ax * ay;
                    a13 += ax * az;
                    a22 += ay * ay;
                    a23 += ay * az;
                    a33 += az * az;
                }
                a11 /= 5;
                a12 /= 5;
                a13 /= 5;
                a22 /= 5;
                a23 /= 5;
                a33 /= 5;

                matA1.at<float>(0, 0) = a11;
                matA1.at<float>(0, 1) = a12;
                matA1.at<float>(0, 2) = a13;
                matA1.at<float>(1, 0) = a12;
                matA1.at<float>(1, 1) = a22;
                matA1.at<float>(1, 2) = a23;
                matA1.at<float>(2, 0) = a13;
                matA1.at<float>(2, 1) = a23;
                matA1.at<float>(2, 2) = a33;

                // 求协方差矩阵的特征值和特征向量, 特征值:matD1,特征向量:保存在矩阵matV1中。
                cv::eigen(matA1, matD1, matV1);

                // 其中一个特征值远远大于其他两个,则呈线状
                if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1))
                {

                    float x0 = pointSel.x;
                    float y0 = pointSel.y;
                    float z0 = pointSel.z;
                    float x1 = cx + 0.1 * matV1.at<float>(0, 0);
                    float y1 = cy + 0.1 * matV1.at<float>(0, 1);
                    float z1 = cz + 0.1 * matV1.at<float>(0, 2);
                    float x2 = cx - 0.1 * matV1.at<float>(0, 0);
                    float y2 = cy - 0.1 * matV1.at<float>(0, 1);
                    float z2 = cz - 0.1 * matV1.at<float>(0, 2);

                    // 与里程计的计算类似,计算到直线的距离
                    float a012 = sqrt(((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) + ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) + ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1)) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1)));

                    float l12 = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (z1 - z2) * (z1 - z2));

                    float la = ((y1 - y2) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) + (z1 - z2) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1))) / a012 / l12;

                    float lb = -((x1 - x2) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) - (z1 - z2) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1))) / a012 / l12;

                    float lc = -((x1 - x2) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) + (y1 - y2) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1))) / a012 / l12;

                    float ld2 = a012 / l12;

                    // 下面涉及到一个鲁棒核函数,作者简单地设计了这个核函数。
                    float s = 1 - 0.9 * fabs(ld2);

                    coeff.x = s * la;
                    coeff.y = s * lb;
                    coeff.z = s * lc;
                    coeff.intensity = s * ld2;

                    // 程序末尾根据s的值来判断是否将点云点放入点云集合laserCloudOri以及coeffSel中。
                    if (s > 0.1)
                    {
                        laserCloudOriCornerVec[i] = pointOri;
                        coeffSelCornerVec[i] = coeff;
                        laserCloudOriCornerFlag[i] = true;
                    }
                }
            }
        }
    }

4.4.2 surfOptimization()

    // 验证面点是否符合要求
    void surfOptimization()
    {
        updatePointAssociateToMap();

#pragma omp parallel for num_threads(numberOfCores)
        for (int i = 0; i < laserCloudSurfLastDSNum; i++)
        {
            PointType pointOri, pointSel, coeff;
            std::vector<int> pointSearchInd;
            std::vector<float> pointSearchSqDis;

            pointOri = laserCloudSurfLastDS->points[i];
            pointAssociateToMap(&pointOri, &pointSel);
            kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

            Eigen::Matrix<float, 5, 3> matA0;       // 5*3 存储5个紧邻点
            Eigen::Matrix<float, 5, 1> matB0;
            Eigen::Vector3f matX0;

            matA0.setZero();
            matB0.fill(-1);
            matX0.setZero();

            // 只考虑附近1.0m内
            if (pointSearchSqDis[4] < 1.0)
            {
                for (int j = 0; j < 5; j++)
                {
                    matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
                    matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
                    matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
                }

                // 求maxA0中点构成的平面法向量,AX=B
                matX0 = matA0.colPivHouseholderQr().solve(matB0);
                // 法向量参数 ax+by+cz+d = 0
                float pa = matX0(0, 0);
                float pb = matX0(1, 0);
                float pc = matX0(2, 0);
                float pd = 1;

                float ps = sqrt(pa * pa + pb * pb + pc * pc);
                pa /= ps;
                pb /= ps;
                pc /= ps;
                pd /= ps;

                // 这里再次判断求解的方向向量和每个点相乘,最后结果是不是在误差范围内。
                bool planeValid = true;
                for (int j = 0; j < 5; j++)
                {
                    if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
                             pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
                             pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2)
                    {
                        planeValid = false;
                        break;
                    }
                }
                // 是有效的平面
                if (planeValid)
                {
                    float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;

                    float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointSel.x * pointSel.x + pointSel.y * pointSel.y + pointSel.z * pointSel.z));

                    coeff.x = s * pa;
                    coeff.y = s * pb;
                    coeff.z = s * pc;
                    coeff.intensity = s * pd2;
                    // 误差在允许的范围内的话把这个点放到点云laserCloudOri中去
                    // 把对应的向量coeff放到coeffSel中
                    if (s > 0.1)
                    {
                        laserCloudOriSurfVec[i] = pointOri;
                        coeffSelSurfVec[i] = coeff;
                        laserCloudOriSurfFlag[i] = true;
                    }
                }
            }
        }
    }

4.4.3 combineOptimizationCoeffs()

    // 将2种残差添加到同一个变量中
    void combineOptimizationCoeffs()
    {
        // combine corner coeffs
        for (int i = 0; i < laserCloudCornerLastDSNum; ++i)
        {
            if (laserCloudOriCornerFlag[i] == true)
            {
                laserCloudOri->push_back(laserCloudOriCornerVec[i]);
                coeffSel->push_back(coeffSelCornerVec[i]);
            }
        }
        // combine surf coeffs
        for (int i = 0; i < laserCloudSurfLastDSNum; ++i)
        {
            if (laserCloudOriSurfFlag[i] == true)
            {
                laserCloudOri->push_back(laserCloudOriSurfVec[i]);
                coeffSel->push_back(coeffSelSurfVec[i]);
            }
        }
        // reset flag for next iteration
        std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
        std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
    }

4.4.4 LMOptimization()

    // 高斯牛顿优化, 参考LOAM
    bool LMOptimization(int iterCount)
    {
        // This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
        // lidar <- camera      ---     camera <- lidar
        // x = z                ---     x = y
        // y = x                ---     y = z
        // z = y                ---     z = x
        // roll = yaw           ---     roll = pitch
        // pitch = roll         ---     pitch = yaw
        // yaw = pitch          ---     yaw = roll

        // lidar -> camera
        float srx = sin(transformTobeMapped[1]);
        float crx = cos(transformTobeMapped[1]);
        float sry = sin(transformTobeMapped[2]);
        float cry = cos(transformTobeMapped[2]);
        float srz = sin(transformTobeMapped[0]);
        float crz = cos(transformTobeMapped[0]);

        // 初次优化时,特征值门限设置为50,小于这个值认为是退化了,修改matX,matX=matP*matX2
        int laserCloudSelNum = laserCloudOri->size();
        if (laserCloudSelNum < 50)
        {
            return false;
        }

        cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0));
        cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
        cv::Mat matP(6, 6, CV_32F, cv::Scalar::all(0));

        PointType pointOri, coeff;

        for (int i = 0; i < laserCloudSelNum; i++)
        {
            // lidar -> camera
            pointOri.x = laserCloudOri->points[i].y;
            pointOri.y = laserCloudOri->points[i].z;
            pointOri.z = laserCloudOri->points[i].x;
            // lidar -> camera
            coeff.x = coeffSel->points[i].y;
            coeff.y = coeffSel->points[i].z;
            coeff.z = coeffSel->points[i].x;
            coeff.intensity = coeffSel->points[i].intensity;
            // in camera
            // 计算雅克比
            float arx = (crx * sry * srz * pointOri.x + crx * crz * sry * pointOri.y - srx * sry * pointOri.z) * coeff.x + (-srx * srz * pointOri.x - crz * srx * pointOri.y - crx * pointOri.z) * coeff.y + (crx * cry * srz * pointOri.x + crx * cry * crz * pointOri.y - cry * srx * pointOri.z) * coeff.z;

            float ary = ((cry * srx * srz - crz * sry) * pointOri.x + (sry * srz + cry * crz * srx) * pointOri.y + crx * cry * pointOri.z) * coeff.x + ((-cry * crz - srx * sry * srz) * pointOri.x + (cry * srz - crz * srx * sry) * pointOri.y - crx * sry * pointOri.z) * coeff.z;

            float arz = ((crz * srx * sry - cry * srz) * pointOri.x + (-cry * crz - srx * sry * srz) * pointOri.y) * coeff.x + (crx * crz * pointOri.x - crx * srz * pointOri.y) * coeff.y + ((sry * srz + cry * crz * srx) * pointOri.x + (crz * sry - cry * srx * srz) * pointOri.y) * coeff.z;
            // lidar -> camera
            matA.at<float>(i, 0) = arz;
            matA.at<float>(i, 1) = arx;
            matA.at<float>(i, 2) = ary;
            matA.at<float>(i, 3) = coeff.z;
            matA.at<float>(i, 4) = coeff.x;
            matA.at<float>(i, 5) = coeff.y;
            matB.at<float>(i, 0) = -coeff.intensity;
        }

        cv::transpose(matA, matAt);
        matAtA = matAt * matA;
        matAtB = matAt * matB;
        cv::solve(matAtA, matAtB, matX, cv::DECOMP_QR);

        if (iterCount == 0)
        {

            cv::Mat matE(1, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV(6, 6, CV_32F, cv::Scalar::all(0));
            cv::Mat matV2(6, 6, CV_32F, cv::Scalar::all(0));

            cv::eigen(matAtA, matE, matV);
            matV.copyTo(matV2);

            isDegenerate = false;
            float eignThre[6] = {100, 100, 100, 100, 100, 100};
            for (int i = 5; i >= 0; i--)
            {
                if (matE.at<float>(0, i) < eignThre[i])
                {
                    for (int j = 0; j < 6; j++)
                    {
                        matV2.at<float>(i, j) = 0;
                    }
                    isDegenerate = true;
                }
                else
                {
                    break;
                }
            }
            matP = matV.inv() * matV2;
        }

        if (isDegenerate)
        {
            cv::Mat matX2(6, 1, CV_32F, cv::Scalar::all(0));
            matX.copyTo(matX2);
            matX = matP * matX2;
        }

        transformTobeMapped[0] += matX.at<float>(0, 0);
        transformTobeMapped[1] += matX.at<float>(1, 0);
        transformTobeMapped[2] += matX.at<float>(2, 0);
        transformTobeMapped[3] += matX.at<float>(3, 0);
        transformTobeMapped[4] += matX.at<float>(4, 0);
        transformTobeMapped[5] += matX.at<float>(5, 0);

        float deltaR = sqrt(
            pow(pcl::rad2deg(matX.at<float>(0, 0)), 2) +
            pow(pcl::rad2deg(matX.at<float>(1, 0)), 2) +
            pow(pcl::rad2deg(matX.at<float>(2, 0)), 2));
        float deltaT = sqrt(
            pow(matX.at<float>(3, 0) * 100, 2) +
            pow(matX.at<float>(4, 0) * 100, 2) +
            pow(matX.at<float>(5, 0) * 100, 2));

        // 在判断是否是有效的优化时,要求旋转部分的模长小于0.05m,平移部分的模长也小于0.05度
        if (deltaR < 0.05 && deltaT < 0.05)
        {
            return true; // converged
        }
        return false; // keep optimizing
    }

4.4.5 transformUpdate()

    // 更新 transformTobeMapped
    void transformUpdate()
    {
        // IMU可用的话更新transformTobeMapped
        if (cloudInfo.imuAvailable == true)
        {
            if (std::abs(cloudInfo.imuPitchInit) < 1.4)
            {
                double imuWeight = imuRPYWeight;
                tf::Quaternion imuQuaternion;
                tf::Quaternion transformQuaternion;
                double rollMid, pitchMid, yawMid;

                // slerp roll
                transformQuaternion.setRPY(transformTobeMapped[0], 0, 0);
                imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
                // 线性插值
                tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[0] = rollMid;

                // slerp pitch
                transformQuaternion.setRPY(0, transformTobeMapped[1], 0);
                imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
                tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                transformTobeMapped[1] = pitchMid;
            }
        }

        transformTobeMapped[0] = constraintTransformation(transformTobeMapped[0], rotation_tollerance);
        transformTobeMapped[1] = constraintTransformation(transformTobeMapped[1], rotation_tollerance);
        transformTobeMapped[5] = constraintTransformation(transformTobeMapped[5], z_tollerance);

        incrementalOdometryAffineBack = trans2Affine3f(transformTobeMapped);
    }

4.5 saveKeyFramesAndFactor()

    // 添加各种因子,并进行位姿求解
    void saveKeyFramesAndFactor()
    {
        if (saveFrame() == false)
            return;

        // 添加各种factor、保存关键帧

        // odom factor
        addOdomFactor();

        // gps factor
        addGPSFactor();

        // loop factor
        addLoopFactor();

        // cout << "****************************************************" << endl;
        // gtSAMgraph.print("GTSAM Graph:\n");

        // update iSAM
        isam->update(gtSAMgraph, initialEstimate);
        isam->update();

        if (aLoopIsClosed == true)
        {
            isam->update();
            isam->update();
            isam->update();
            isam->update();
            isam->update();
        }

        gtSAMgraph.resize(0);
        initialEstimate.clear();

        //save key poses
        PointType thisPose3D;
        PointTypePose thisPose6D;
        Pose3 latestEstimate;

        // 优化后的pose
        isamCurrentEstimate = isam->calculateEstimate();
        latestEstimate = isamCurrentEstimate.at<Pose3>(isamCurrentEstimate.size() - 1);
        // cout << "****************************************************" << endl;
        // isamCurrentEstimate.print("Current estimate: ");

        // 将估计出的位姿添加到到cloudKeyPoses3D、cloudKeyPoses6D中
        thisPose3D.x = latestEstimate.translation().x();
        thisPose3D.y = latestEstimate.translation().y();
        thisPose3D.z = latestEstimate.translation().z();
        thisPose3D.intensity = cloudKeyPoses3D->size(); // this can be used as index
        cloudKeyPoses3D->push_back(thisPose3D);

        thisPose6D.x = thisPose3D.x;
        thisPose6D.y = thisPose3D.y;
        thisPose6D.z = thisPose3D.z;
        thisPose6D.intensity = thisPose3D.intensity; // this can be used as index
        thisPose6D.roll = latestEstimate.rotation().roll();
        thisPose6D.pitch = latestEstimate.rotation().pitch();
        thisPose6D.yaw = latestEstimate.rotation().yaw();
        thisPose6D.time = timeLaserInfoCur;
        cloudKeyPoses6D->push_back(thisPose6D);

        // cout << "****************************************************" << endl;
        // cout << "Pose covariance:" << endl;
        // cout << isam->marginalCovariance(isamCurrentEstimate.size()-1) << endl << endl;
        // 边缘化得到每个变量的协方差
        poseCovariance = isam->marginalCovariance(isamCurrentEstimate.size() - 1);

        // save updated transform
        transformTobeMapped[0] = latestEstimate.rotation().roll();
        transformTobeMapped[1] = latestEstimate.rotation().pitch();
        transformTobeMapped[2] = latestEstimate.rotation().yaw();
        transformTobeMapped[3] = latestEstimate.translation().x();
        transformTobeMapped[4] = latestEstimate.translation().y();
        transformTobeMapped[5] = latestEstimate.translation().z();

        // save all the received edge and surf points
        pcl::PointCloud<PointType>::Ptr thisCornerKeyFrame(new pcl::PointCloud<PointType>());
        pcl::PointCloud<PointType>::Ptr thisSurfKeyFrame(new pcl::PointCloud<PointType>());
        pcl::copyPointCloud(*laserCloudCornerLastDS, *thisCornerKeyFrame);
        pcl::copyPointCloud(*laserCloudSurfLastDS, *thisSurfKeyFrame);

        // save key frame cloud
        cornerCloudKeyFrames.push_back(thisCornerKeyFrame);
        surfCloudKeyFrames.push_back(thisSurfKeyFrame);

        // save path for visualization
        updatePath(thisPose6D);
    }

4.5.1 addOdomFactor()

    // 激光里程计
    void addOdomFactor()
    {
        if (cloudKeyPoses3D->points.empty())
        {
            // 第一帧进来时初始化gtsam参数
            noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-2, 1e-2, M_PI * M_PI, 1e8, 1e8, 1e8).finished()); // rad*rad, meter*meter
            // 先验因子
            gtSAMgraph.add(PriorFactor<Pose3>(0, trans2gtsamPose(transformTobeMapped), priorNoise));
            initialEstimate.insert(0, trans2gtsamPose(transformTobeMapped));
        }
        else
        {
            noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
            gtsam::Pose3 poseFrom = pclPointTogtsamPose3(cloudKeyPoses6D->points.back());
            gtsam::Pose3 poseTo = trans2gtsamPose(transformTobeMapped);
            // 二元因子
            gtSAMgraph.add(BetweenFactor<Pose3>(cloudKeyPoses3D->size() - 1, cloudKeyPoses3D->size(), poseFrom.between(poseTo), odometryNoise));
            initialEstimate.insert(cloudKeyPoses3D->size(), poseTo);
        }
    }

4.5.2 addGPSFactor()

    // gps里程计
    void addGPSFactor()
    {
        if (gpsQueue.empty())
            return;

        // wait for system initialized and settles down
        if (cloudKeyPoses3D->points.empty())
            return;
        else
        {
            if (pointDistance(cloudKeyPoses3D->front(), cloudKeyPoses3D->back()) < 5.0)
                return;
        }

        // pose covariance small, no need to correct
        // 当估计出的位置协方差较小,没必要用gps优化
        if (poseCovariance(3, 3) < poseCovThreshold && poseCovariance(4, 4) < poseCovThreshold)
            return;

        // last gps position
        static PointType lastGPSPoint;

        while (!gpsQueue.empty())
        {
            // 时间戳对齐
            if (gpsQueue.front().header.stamp.toSec() < timeLaserInfoCur - 0.2)
            {
                // message too old
                gpsQueue.pop_front();
            }
            else if (gpsQueue.front().header.stamp.toSec() > timeLaserInfoCur + 0.2)
            {
                // message too new
                break;
            }
            else
            {
                nav_msgs::Odometry thisGPS = gpsQueue.front();
                gpsQueue.pop_front();

                // GPS too noisy, skip
                float noise_x = thisGPS.pose.covariance[0];
                float noise_y = thisGPS.pose.covariance[7];
                float noise_z = thisGPS.pose.covariance[14];
                if (noise_x > gpsCovThreshold || noise_y > gpsCovThreshold)
                    continue;

                float gps_x = thisGPS.pose.pose.position.x;
                float gps_y = thisGPS.pose.pose.position.y;
                float gps_z = thisGPS.pose.pose.position.z;
                if (!useGpsElevation)
                {
                    gps_z = transformTobeMapped[5];
                    noise_z = 0.01;
                }

                // GPS not properly initialized (0,0,0)
                if (abs(gps_x) < 1e-6 && abs(gps_y) < 1e-6)
                    continue;

                // Add GPS every a few meters
                PointType curGPSPoint;
                curGPSPoint.x = gps_x;
                curGPSPoint.y = gps_y;
                curGPSPoint.z = gps_z;
                if (pointDistance(curGPSPoint, lastGPSPoint) < 5.0)
                    continue;
                else
                    lastGPSPoint = curGPSPoint;

                // 添加GPS因子
                gtsam::Vector Vector3(3);
                Vector3 << max(noise_x, 1.0f), max(noise_y, 1.0f), max(noise_z, 1.0f);
                noiseModel::Diagonal::shared_ptr gps_noise = noiseModel::Diagonal::Variances(Vector3);
                gtsam::GPSFactor gps_factor(cloudKeyPoses3D->size(), gtsam::Point3(gps_x, gps_y, gps_z), gps_noise);
                gtSAMgraph.add(gps_factor);

                aLoopIsClosed = true;
                break;
            }
        }
    }

4.5.3 addLoopFactor()

    // 添加回环的因子
    void addLoopFactor()
    {
        if (loopIndexQueue.empty())
            return;

        for (int i = 0; i < (int)loopIndexQueue.size(); ++i)
        {
            int indexFrom = loopIndexQueue[i].first;
            int indexTo = loopIndexQueue[i].second;
            gtsam::Pose3 poseBetween = loopPoseQueue[i];
            gtsam::noiseModel::Diagonal::shared_ptr noiseBetween = loopNoiseQueue[i];
            gtSAMgraph.add(BetweenFactor<Pose3>(indexFrom, indexTo, poseBetween, noiseBetween));
        }

        loopIndexQueue.clear();
        loopPoseQueue.clear();
        loopNoiseQueue.clear();
        aLoopIsClosed = true;
    }

4.6 correctPoses()

    // 更新优化后的关键帧
    void correctPoses()
    {
        if (cloudKeyPoses3D->points.empty())
            return;

        if (aLoopIsClosed == true)
        {
            // clear map cache
            laserCloudMapContainer.clear();
            // clear path
            globalPath.poses.clear();
            // update key poses
            int numPoses = isamCurrentEstimate.size();
            for (int i = 0; i < numPoses; ++i)
            {
                cloudKeyPoses3D->points[i].x = isamCurrentEstimate.at<Pose3>(i).translation().x();
                cloudKeyPoses3D->points[i].y = isamCurrentEstimate.at<Pose3>(i).translation().y();
                cloudKeyPoses3D->points[i].z = isamCurrentEstimate.at<Pose3>(i).translation().z();

                cloudKeyPoses6D->points[i].x = cloudKeyPoses3D->points[i].x;
                cloudKeyPoses6D->points[i].y = cloudKeyPoses3D->points[i].y;
                cloudKeyPoses6D->points[i].z = cloudKeyPoses3D->points[i].z;
                cloudKeyPoses6D->points[i].roll = isamCurrentEstimate.at<Pose3>(i).rotation().roll();
                cloudKeyPoses6D->points[i].pitch = isamCurrentEstimate.at<Pose3>(i).rotation().pitch();
                cloudKeyPoses6D->points[i].yaw = isamCurrentEstimate.at<Pose3>(i).rotation().yaw();

                updatePath(cloudKeyPoses6D->points[i]);
            }

            aLoopIsClosed = false;
        }
    }

    void updatePath(const PointTypePose &pose_in)
    {
        geometry_msgs::PoseStamped pose_stamped;
        pose_stamped.header.stamp = ros::Time().fromSec(pose_in.time);
        pose_stamped.header.frame_id = odometryFrame;
        pose_stamped.pose.position.x = pose_in.x;
        pose_stamped.pose.position.y = pose_in.y;
        pose_stamped.pose.position.z = pose_in.z;
        tf::Quaternion q = tf::createQuaternionFromRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
        pose_stamped.pose.orientation.x = q.x();
        pose_stamped.pose.orientation.y = q.y();
        pose_stamped.pose.orientation.z = q.z();
        pose_stamped.pose.orientation.w = q.w();

        globalPath.poses.push_back(pose_stamped);
    }

4.7 publishOdometry()

    // 发布激光里程计
    void publishOdometry()
    {
        // Publish odometry for ROS (global)
        nav_msgs::Odometry laserOdometryROS;
        laserOdometryROS.header.stamp = timeLaserInfoStamp;
        laserOdometryROS.header.frame_id = odometryFrame;
        laserOdometryROS.child_frame_id = "odom_mapping";
        laserOdometryROS.pose.pose.position.x = transformTobeMapped[3];
        laserOdometryROS.pose.pose.position.y = transformTobeMapped[4];
        laserOdometryROS.pose.pose.position.z = transformTobeMapped[5];
        laserOdometryROS.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
        pubLaserOdometryGlobal.publish(laserOdometryROS);

        // Publish TF
        static tf::TransformBroadcaster br;
        tf::Transform t_odom_to_lidar = tf::Transform(tf::createQuaternionFromRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]),
                                                      tf::Vector3(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5]));
        tf::StampedTransform trans_odom_to_lidar = tf::StampedTransform(t_odom_to_lidar, timeLaserInfoStamp, odometryFrame, "lidar_link");
        br.sendTransform(trans_odom_to_lidar);

        // Publish odometry for ROS (incremental)
        static bool lastIncreOdomPubFlag = false;
        static nav_msgs::Odometry laserOdomIncremental; // incremental odometry msg
        static Eigen::Affine3f increOdomAffine;         // incremental odometry in affine
        if (lastIncreOdomPubFlag == false)
        {
            lastIncreOdomPubFlag = true;
            laserOdomIncremental = laserOdometryROS;
            increOdomAffine = trans2Affine3f(transformTobeMapped);
        }
        else
        {
            Eigen::Affine3f affineIncre = incrementalOdometryAffineFront.inverse() * incrementalOdometryAffineBack;
            increOdomAffine = increOdomAffine * affineIncre;
            float x, y, z, roll, pitch, yaw;
            pcl::getTranslationAndEulerAngles(increOdomAffine, x, y, z, roll, pitch, yaw);
            if (cloudInfo.imuAvailable == true)
            {
                if (std::abs(cloudInfo.imuPitchInit) < 1.4)
                {
                    double imuWeight = 0.1;
                    tf::Quaternion imuQuaternion;
                    tf::Quaternion transformQuaternion;
                    double rollMid, pitchMid, yawMid;

                    // slerp roll
                    transformQuaternion.setRPY(roll, 0, 0);
                    imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
                    tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                    roll = rollMid;

                    // slerp pitch
                    transformQuaternion.setRPY(0, pitch, 0);
                    imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
                    tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
                    pitch = pitchMid;
                }
            }
            laserOdomIncremental.header.stamp = timeLaserInfoStamp;
            laserOdomIncremental.header.frame_id = odometryFrame;
            laserOdomIncremental.child_frame_id = "odom_mapping";
            laserOdomIncremental.pose.pose.position.x = x;
            laserOdomIncremental.pose.pose.position.y = y;
            laserOdomIncremental.pose.pose.position.z = z;
            laserOdomIncremental.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
            if (isDegenerate)
                laserOdomIncremental.pose.covariance[0] = 1;
            else
                laserOdomIncremental.pose.covariance[0] = 0;
        }
        pubLaserOdometryIncremental.publish(laserOdomIncremental);
    }

4.8 publishFrames()

    void publishFrames()
    {
        if (cloudKeyPoses3D->points.empty())
            return;
        // publish key poses
        publishCloud(&pubKeyPoses, cloudKeyPoses3D, timeLaserInfoStamp, odometryFrame);
        // Publish surrounding key frames
        publishCloud(&pubRecentKeyFrames, laserCloudSurfFromMapDS, timeLaserInfoStamp, odometryFrame);
        // publish registered key frame
        if (pubRecentKeyFrame.getNumSubscribers() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut += *transformPointCloud(laserCloudCornerLastDS, &thisPose6D);
            *cloudOut += *transformPointCloud(laserCloudSurfLastDS, &thisPose6D);
            publishCloud(&pubRecentKeyFrame, cloudOut, timeLaserInfoStamp, odometryFrame);
        }
        // publish registered high-res raw cloud
        if (pubCloudRegisteredRaw.getNumSubscribers() != 0)
        {
            pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
            pcl::fromROSMsg(cloudInfo.cloud_deskewed, *cloudOut);
            PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
            *cloudOut = *transformPointCloud(cloudOut, &thisPose6D);
            publishCloud(&pubCloudRegisteredRaw, cloudOut, timeLaserInfoStamp, odometryFrame);
        }
        // publish path
        if (pubPath.getNumSubscribers() != 0)
        {/
            globalPath.header.stamp = timeLaserInfoStamp;
            globalPath.header.frame_id = odometryFrame;
            pubPath.publish(globalPath);
        }
    }

总结

没整明白呢,上边的注释还不太懂,回头再更新

感觉大体上是进行激光里程计的计算,然后将激光里程计,gps的里程计,与回环,对这3个因子进行优化,求出优化后的位姿,作为激光里程计。

REFERENCES

开源SLAM系统:LIO-SAM源码解析 http://xchu.net/2020/08/19/51liosam/

https://github.com/TixiaoShan/LIO-SAM/blob/master/src/mapOptmization.cpp

你可能感兴趣的:(激光SLAM,slam,LIO-SAM)