本文阅读的代码为2020年11月1日下载的github的最新master。
如果代码后续更新了请以github为准。
可见
int main(int argc, char **argv)
{
ros::init(argc, argv, "lio_sam");
mapOptimization MO;
ROS_INFO("\033[1;32m----> Map Optimization Started.\033[0m");
// 两个线程,一边按固定的频率进行回环检测、添加约束边,另外一边进行地图发布和保存
std::thread loopthread(&mapOptimization::loopClosureThread, &MO);
std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);
ros::spin();
loopthread.join();
visualizeMapThread.join();
return 0;
}
定义了一个新的数据类型,包含 x,y,z,roll,pitch,yaw, intensity, time
/*
* A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
*/
struct PointXYZIRPYT
{
PCL_ADD_POINT4D
PCL_ADD_INTENSITY; // preferred way of adding a XYZ+padding
float roll;
float pitch;
float yaw;
double time;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new allocators are aligned
} EIGEN_ALIGN16; // enforce SSE padding for correct memory alignment
POINT_CLOUD_REGISTER_POINT_STRUCT(PointXYZIRPYT,
(float, x, x)(float, y, y)(float, z, z)(float, intensity, intensity)
(float, roll, roll)(float, pitch, pitch)(float, yaw, yaw)(double, time, time))
typedef PointXYZIRPYT PointTypePose;
1600多行没注释的代码。。。
class mapOptimization : public ParamServer
{
public:
// gtsam
NonlinearFactorGraph gtSAMgraph;
Values initialEstimate;
Values optimizedEstimate;
ISAM2 *isam;
Values isamCurrentEstimate;
Eigen::MatrixXd poseCovariance;
ros::Publisher pubLaserCloudSurround;
ros::Publisher pubLaserOdometryGlobal;
ros::Publisher pubLaserOdometryIncremental;
ros::Publisher pubKeyPoses;
ros::Publisher pubPath;
ros::Publisher pubHistoryKeyFrames;
ros::Publisher pubIcpKeyFrames;
ros::Publisher pubRecentKeyFrames;
ros::Publisher pubRecentKeyFrame;
ros::Publisher pubCloudRegisteredRaw;
ros::Publisher pubLoopConstraintEdge;
ros::Subscriber subCloud;
ros::Subscriber subGPS;
ros::Subscriber subLoop;
std::deque<nav_msgs::Odometry> gpsQueue;
lio_sam::cloud_info cloudInfo;
vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D;
pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D;
pcl::PointCloud<PointType>::Ptr copy_cloudKeyPoses3D;
pcl::PointCloud<PointTypePose>::Ptr copy_cloudKeyPoses6D;
pcl::PointCloud<PointType>::Ptr laserCloudCornerLast; // corner feature set from odoOptimization
pcl::PointCloud<PointType>::Ptr laserCloudSurfLast; // surf feature set from odoOptimization
pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner featuer set from odoOptimization
pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS; // downsampled surf featuer set from odoOptimization
pcl::PointCloud<PointType>::Ptr laserCloudOri;
pcl::PointCloud<PointType>::Ptr coeffSel;
std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
std::vector<PointType> coeffSelCornerVec;
std::vector<bool> laserCloudOriCornerFlag;
std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
std::vector<PointType> coeffSelSurfVec;
std::vector<bool> laserCloudOriSurfFlag;
map<int, pair<pcl::PointCloud<PointType>, pcl::PointCloud<PointType>>> laserCloudMapContainer;
pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap;
pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap;
pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS;
pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;
pcl::VoxelGrid<PointType> downSizeFilterCorner;
pcl::VoxelGrid<PointType> downSizeFilterSurf;
pcl::VoxelGrid<PointType> downSizeFilterICP;
pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization
ros::Time timeLaserInfoStamp;
double timeLaserInfoCur;
float transformTobeMapped[6];
std::mutex mtx;
std::mutex mtxLoopInfo;
bool isDegenerate = false;
Eigen::Matrix<float, 6, 6> matP;
int laserCloudCornerFromMapDSNum = 0;
int laserCloudSurfFromMapDSNum = 0;
int laserCloudCornerLastDSNum = 0;
int laserCloudSurfLastDSNum = 0;
bool aLoopIsClosed = false;
map<int, int> loopIndexContainer; // from new to old
vector<pair<int, int>> loopIndexQueue;
vector<gtsam::Pose3> loopPoseQueue;
vector<gtsam::noiseModel::Diagonal::shared_ptr> loopNoiseQueue;
deque<std_msgs::Float64MultiArray> loopInfoVec;
nav_msgs::Path globalPath;
Eigen::Affine3f transPointAssociateToMap;
Eigen::Affine3f incrementalOdometryAffineFront;
Eigen::Affine3f incrementalOdometryAffineBack;
};
mapOptimization()
{
// ISAM2的初始化,没用过。。。
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.1;
parameters.relinearizeSkip = 1;
isam = new ISAM2(parameters);
pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
// 全局地图
pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
// 优化后的odom
pubLaserOdometryGlobal = nh.advertise<nav_msgs::Odometry>("lio_sam/mapping/odometry", 1);
pubLaserOdometryIncremental = nh.advertise<nav_msgs::Odometry>("lio_sam/mapping/odometry_incremental", 1);
pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);
// 订阅特征提取后的cloud_info
subCloud = nh.subscribe<lio_sam::cloud_info>("lio_sam/feature/cloud_info", 1, &mapOptimization::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
subGPS = nh.subscribe<nav_msgs::Odometry>(gpsTopic, 200, &mapOptimization::gpsHandler, this, ros::TransportHints().tcpNoDelay());
subLoop = nh.subscribe<std_msgs::Float64MultiArray>("lio_loop/loop_closure_detection", 1, &mapOptimization::loopInfoHandler, this, ros::TransportHints().tcpNoDelay());
pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);
pubLoopConstraintEdge = nh.advertise<visualization_msgs::MarkerArray>("/lio_sam/mapping/loop_closure_constraints", 1);
pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);
// 设置降采样的栅格大小,均为0.2
downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
// 设置降采样的栅格大小,surroundingKeyframeDensity = 1.0
// for surrounding key poses of scan-to-map optimization
downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity);
allocateMemory();
}
// 指针的初始化
void allocateMemory()
{
cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
copy_cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
copy_cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
laserCloudCornerLast.reset(new pcl::PointCloud<PointType>()); // corner feature set from odoOptimization
laserCloudSurfLast.reset(new pcl::PointCloud<PointType>()); // surf feature set from odoOptimization
laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled surf featuer set from odoOptimization
laserCloudOri.reset(new pcl::PointCloud<PointType>());
coeffSel.reset(new pcl::PointCloud<PointType>());
laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);
std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());
kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());
for (int i = 0; i < 6; ++i)
{
transformTobeMapped[i] = 0;
}
matP.setZero();
}
// 点云的回调函数
void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr &msgIn)
{
// extract time stamp
timeLaserInfoStamp = msgIn->header.stamp;
timeLaserInfoCur = msgIn->header.stamp.toSec();
// extract info and feature cloud
cloudInfo = *msgIn;
pcl::fromROSMsg(msgIn->cloud_corner, *laserCloudCornerLast);
pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);
std::lock_guard<std::mutex> lock(mtx);
static double timeLastProcessing = -1;
// mappingProcessInterval=0.15, 时间间隔小于0.15秒的雷达数据不进行计算
if (timeLaserInfoCur - timeLastProcessing >= mappingProcessInterval)
{
timeLastProcessing = timeLaserInfoCur;
updateInitialGuess();
extractSurroundingKeyFrames();
downsampleCurrentScan();
scan2MapOptimization();
saveKeyFramesAndFactor();
correctPoses();
publishOdometry();
publishFrames();
}
}
void loopClosureThread()
{
if (loopClosureEnableFlag == false)
return;
ros::Rate rate(loopClosureFrequency);
while (ros::ok())
{
rate.sleep();
performLoopClosure();
visualizeLoopClosure();
}
}
void visualizeGlobalMapThread()
{
ros::Rate rate(0.2);
while (ros::ok())
{
rate.sleep();
publishGlobalMap();
}
if (savePCD == false)
return;
cout << "****************************************************" << endl;
cout << "Saving map to pcd files ..." << endl;
// create directory and remove old files;
savePCDDirectory = std::getenv("HOME") + savePCDDirectory;
int unused = system((std::string("exec rm -r ") + savePCDDirectory).c_str());
unused = system((std::string("mkdir ") + savePCDDirectory).c_str());
// save key frame transformations
pcl::io::savePCDFileASCII(savePCDDirectory + "trajectory.pcd", *cloudKeyPoses3D);
pcl::io::savePCDFileASCII(savePCDDirectory + "transformations.pcd", *cloudKeyPoses6D);
// extract global point cloud map
pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++)
{
*globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
*globalSurfCloud += *transformPointCloud(surfCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
}
// down-sample and save corner cloud
downSizeFilterCorner.setInputCloud(globalCornerCloud);
downSizeFilterCorner.filter(*globalCornerCloudDS);
pcl::io::savePCDFileASCII(savePCDDirectory + "cloudCorner.pcd", *globalCornerCloudDS);
// down-sample and save surf cloud
downSizeFilterSurf.setInputCloud(globalSurfCloud);
downSizeFilterSurf.filter(*globalSurfCloudDS);
pcl::io::savePCDFileASCII(savePCDDirectory + "cloudSurf.pcd", *globalSurfCloudDS);
// down-sample and save global point cloud map
*globalMapCloud += *globalCornerCloud;
*globalMapCloud += *globalSurfCloud;
pcl::io::savePCDFileASCII(savePCDDirectory + "cloudGlobal.pcd", *globalMapCloud);
cout << "****************************************************" << endl;
cout << "Saving map to pcd files completed" << endl;
}
// 根据之前保存的位姿,使用odom做位姿的预测,如果imu可用的话再用做姿态的二次变换
void updateInitialGuess()
{
// save current transformation before any processing
incrementalOdometryAffineFront = trans2Affine3f(transformTobeMapped);
static Eigen::Affine3f lastImuTransformation;
// initialization
if (cloudKeyPoses3D->points.empty())
{
// 第一帧点云进来,cloudKeyPoses3D保存的什么?
transformTobeMapped[0] = cloudInfo.imuRollInit;
transformTobeMapped[1] = cloudInfo.imuPitchInit;
transformTobeMapped[2] = cloudInfo.imuYawInit;
// 是否使用imu的角度进行初始化,默认为不用
if (!useImuHeadingInitialization)
transformTobeMapped[2] = 0;
// save imu before return
lastImuTransformation = pcl::getTransformation(0, 0, 0,
cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
return;
}
// use imu pre-integration estimation for pose guess
static bool lastImuPreTransAvailable = false;
static Eigen::Affine3f lastImuPreTransformation;
// odom可用的话, 使用odom作为初始位姿
if (cloudInfo.odomAvailable == true)
{
Eigen::Affine3f transBack = pcl::getTransformation(cloudInfo.initialGuessX, cloudInfo.initialGuessY, cloudInfo.initialGuessZ,
cloudInfo.initialGuessRoll, cloudInfo.initialGuessPitch, cloudInfo.initialGuessYaw);
// 如果是第一个位姿,不做预测
if (lastImuPreTransAvailable == false)
{
lastImuPreTransformation = transBack;
lastImuPreTransAvailable = true;
}
else
{
// 使用odom的pose变化做预测
Eigen::Affine3f transIncre = lastImuPreTransformation.inverse() * transBack;
Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
Eigen::Affine3f transFinal = transTobe * transIncre;
pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
lastImuPreTransformation = transBack;
lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
return;
}
}
// use imu incremental estimation for pose guess (only rotation)
// imu可用的话, 使用imu计算一个旋转增量,将之前保存的位姿做姿态的变换
if (cloudInfo.imuAvailable == true)
{
// 根据imu的角度变化量,求得旋转的Affine3f(4*4)
Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
// 前一时刻的imu的角度值的逆乘以当前时刻的角度值,等于这一段时间内的角度增量(角度变化量)
Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;
// 6*1的向量, 转成Affine3f
Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
// 根据角度增量,求得变化后的位姿
Eigen::Affine3f transFinal = transTobe * transIncre;
// Affine3f 转向量
pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
// 当前帧imu数据变成上一帧imu数据
lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
return;
}
}
void extractSurroundingKeyFrames()
{
// 没有初始化
if (cloudKeyPoses3D->points.empty() == true)
return;
// if (loopClosureEnableFlag == true)
// {
// extractForLoopClosure();
// } else {
// extractNearby();
// }
extractNearby();
}
// 进行关键帧提取
void extractNearby()
{
// 提取cloudKeyPoses3D 附近的点云帧, 放到 surroundingKeyPoses 中
pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>());
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
// create kd-tree
// extract all the nearby key poses and downsample them
kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D);
kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(),
(double)surroundingKeyframeSearchRadius, // 50m范围内的关键帧
pointSearchInd, pointSearchSqDis);
// 将满足要求的点云帧加到 surroundingKeyPoses 中
for (int i = 0; i < (int)pointSearchInd.size(); ++i)
{
int id = pointSearchInd[i];
surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
}
// 对surroundingKeyPoses进降采样, 保存在 surroundingKeyPosesDS
downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);
// also extract some latest key frames in case the robot rotates in one position
// 把10s内同方向的关键帧也加到surroundingKeyPosesDS中
int numPoses = cloudKeyPoses3D->size();
for (int i = numPoses - 1; i >= 0; --i)
{
// 10s内的位姿态都加进来
if (timeLaserInfoCur - cloudKeyPoses6D->points[i].time < 10.0)
surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
else
break;
}
extractCloud(surroundingKeyPosesDS);
}
// 根据位姿提取出角点与面点,并进行降采样
void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
{
// fuse the map
laserCloudCornerFromMap->clear();
laserCloudSurfFromMap->clear();
for (int i = 0; i < (int)cloudToExtract->size(); ++i)
{
// 离cloudKeyPoses3D最后一个点大于50米,不进行特征提取
if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
continue;
// intensity里保存的是这个点的索引 作为key,角点与面点组成的pair作为value
int thisKeyInd = (int)cloudToExtract->points[i].intensity;
if (laserCloudMapContainer.find(thisKeyInd) != laserCloudMapContainer.end())
{
// transformed cloud available
*laserCloudCornerFromMap += laserCloudMapContainer[thisKeyInd].first;
*laserCloudSurfFromMap += laserCloudMapContainer[thisKeyInd].second;
}
else
{
// transformed cloud not available
pcl::PointCloud<PointType> laserCloudCornerTemp = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
pcl::PointCloud<PointType> laserCloudSurfTemp = *transformPointCloud(surfCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
*laserCloudCornerFromMap += laserCloudCornerTemp;
*laserCloudSurfFromMap += laserCloudSurfTemp;
laserCloudMapContainer[thisKeyInd] = make_pair(laserCloudCornerTemp, laserCloudSurfTemp);
}
}
// Downsample the surrounding corner key frames (or map)
downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
// Downsample the surrounding surf key frames (or map)
downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();
// clear map cache if too large
if (laserCloudMapContainer.size() > 1000)
laserCloudMapContainer.clear();
}
// 对当前雷达的角点与面点以0.2m的格子进行降采样
void downsampleCurrentScan()
{
// Downsample cloud from current scan
laserCloudCornerLastDS->clear();
downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
downSizeFilterCorner.filter(*laserCloudCornerLastDS);
laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();
laserCloudSurfLastDS->clear();
downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
downSizeFilterSurf.filter(*laserCloudSurfLastDS);
laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
}
// 构建点到平面、点到直线的残差, 用高斯牛顿法进行优化
void scan2MapOptimization()
{
if (cloudKeyPoses3D->points.empty())
return;
// 降采样后的角点与面点的数量要同时大于阈值才进行优化
// edgeFeatureMinValidNum 10, surfFeatureMinValidNum 100
if (laserCloudCornerLastDSNum > edgeFeatureMinValidNum &&
laserCloudSurfLastDSNum > surfFeatureMinValidNum)
{
kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMapDS);
kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMapDS);
// 进行30次迭代
for (int iterCount = 0; iterCount < 30; iterCount++)
{
laserCloudOri->clear();
coeffSel->clear();
// 点到平面, 点到直线的残差, 这里写法还与aloam有点区别
// 验证角点与面点是否符合要求
cornerOptimization();
surfOptimization();
// 将2种残差添加到同一个变量中
combineOptimizationCoeffs();
if (LMOptimization(iterCount) == true)
break;
}
// 更新 transformTobeMapped
transformUpdate();
}
else
{
ROS_WARN("Not enough features! Only %d edge and %d planar features available.", laserCloudCornerLastDSNum, laserCloudSurfLastDSNum);
}
}
// 验证角点是否符合要求
void cornerOptimization()
{
// 更新当前位姿与地图间位姿变换
updatePointAssociateToMap();
// 基于OpenMP的共享内存系统的并行编程方法, 减少for循环的执行时间
#pragma omp parallel for num_threads(numberOfCores)
// 遍历点云, 构建点到直线的约束
for (int i = 0; i < laserCloudCornerLastDSNum; i++)
{
PointType pointOri, pointSel, coeff;
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
pointOri = laserCloudCornerLastDS->points[i];
// 将点云从雷达坐标系变换到map坐标系
pointAssociateToMap(&pointOri, &pointSel);
// 在kdtree中搜索当前点的5个邻近点
kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0));
cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0));
cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0));
// 只有最近的点都在一定阈值内(1米)才进行计算
if (pointSearchSqDis[4] < 1.0)
{
// 求出这5个邻近点坐标的均值
float cx = 0, cy = 0, cz = 0;
for (int j = 0; j < 5; j++)
{
cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
}
cx /= 5;
cy /= 5;
cz /= 5;
// 根据均值计算协方差
float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
for (int j = 0; j < 5; j++)
{
float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;
a11 += ax * ax;
a12 += ax * ay;
a13 += ax * az;
a22 += ay * ay;
a23 += ay * az;
a33 += az * az;
}
a11 /= 5;
a12 /= 5;
a13 /= 5;
a22 /= 5;
a23 /= 5;
a33 /= 5;
matA1.at<float>(0, 0) = a11;
matA1.at<float>(0, 1) = a12;
matA1.at<float>(0, 2) = a13;
matA1.at<float>(1, 0) = a12;
matA1.at<float>(1, 1) = a22;
matA1.at<float>(1, 2) = a23;
matA1.at<float>(2, 0) = a13;
matA1.at<float>(2, 1) = a23;
matA1.at<float>(2, 2) = a33;
// 求协方差矩阵的特征值和特征向量, 特征值:matD1,特征向量:保存在矩阵matV1中。
cv::eigen(matA1, matD1, matV1);
// 其中一个特征值远远大于其他两个,则呈线状
if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1))
{
float x0 = pointSel.x;
float y0 = pointSel.y;
float z0 = pointSel.z;
float x1 = cx + 0.1 * matV1.at<float>(0, 0);
float y1 = cy + 0.1 * matV1.at<float>(0, 1);
float z1 = cz + 0.1 * matV1.at<float>(0, 2);
float x2 = cx - 0.1 * matV1.at<float>(0, 0);
float y2 = cy - 0.1 * matV1.at<float>(0, 1);
float z2 = cz - 0.1 * matV1.at<float>(0, 2);
// 与里程计的计算类似,计算到直线的距离
float a012 = sqrt(((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) + ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) + ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1)) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1)));
float l12 = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (z1 - z2) * (z1 - z2));
float la = ((y1 - y2) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) + (z1 - z2) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1))) / a012 / l12;
float lb = -((x1 - x2) * ((x0 - x1) * (y0 - y2) - (x0 - x2) * (y0 - y1)) - (z1 - z2) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1))) / a012 / l12;
float lc = -((x1 - x2) * ((x0 - x1) * (z0 - z2) - (x0 - x2) * (z0 - z1)) + (y1 - y2) * ((y0 - y1) * (z0 - z2) - (y0 - y2) * (z0 - z1))) / a012 / l12;
float ld2 = a012 / l12;
// 下面涉及到一个鲁棒核函数,作者简单地设计了这个核函数。
float s = 1 - 0.9 * fabs(ld2);
coeff.x = s * la;
coeff.y = s * lb;
coeff.z = s * lc;
coeff.intensity = s * ld2;
// 程序末尾根据s的值来判断是否将点云点放入点云集合laserCloudOri以及coeffSel中。
if (s > 0.1)
{
laserCloudOriCornerVec[i] = pointOri;
coeffSelCornerVec[i] = coeff;
laserCloudOriCornerFlag[i] = true;
}
}
}
}
}
// 验证面点是否符合要求
void surfOptimization()
{
updatePointAssociateToMap();
#pragma omp parallel for num_threads(numberOfCores)
for (int i = 0; i < laserCloudSurfLastDSNum; i++)
{
PointType pointOri, pointSel, coeff;
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
pointOri = laserCloudSurfLastDS->points[i];
pointAssociateToMap(&pointOri, &pointSel);
kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
Eigen::Matrix<float, 5, 3> matA0; // 5*3 存储5个紧邻点
Eigen::Matrix<float, 5, 1> matB0;
Eigen::Vector3f matX0;
matA0.setZero();
matB0.fill(-1);
matX0.setZero();
// 只考虑附近1.0m内
if (pointSearchSqDis[4] < 1.0)
{
for (int j = 0; j < 5; j++)
{
matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
}
// 求maxA0中点构成的平面法向量,AX=B
matX0 = matA0.colPivHouseholderQr().solve(matB0);
// 法向量参数 ax+by+cz+d = 0
float pa = matX0(0, 0);
float pb = matX0(1, 0);
float pc = matX0(2, 0);
float pd = 1;
float ps = sqrt(pa * pa + pb * pb + pc * pc);
pa /= ps;
pb /= ps;
pc /= ps;
pd /= ps;
// 这里再次判断求解的方向向量和每个点相乘,最后结果是不是在误差范围内。
bool planeValid = true;
for (int j = 0; j < 5; j++)
{
if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2)
{
planeValid = false;
break;
}
}
// 是有效的平面
if (planeValid)
{
float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;
float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointSel.x * pointSel.x + pointSel.y * pointSel.y + pointSel.z * pointSel.z));
coeff.x = s * pa;
coeff.y = s * pb;
coeff.z = s * pc;
coeff.intensity = s * pd2;
// 误差在允许的范围内的话把这个点放到点云laserCloudOri中去
// 把对应的向量coeff放到coeffSel中
if (s > 0.1)
{
laserCloudOriSurfVec[i] = pointOri;
coeffSelSurfVec[i] = coeff;
laserCloudOriSurfFlag[i] = true;
}
}
}
}
}
// 将2种残差添加到同一个变量中
void combineOptimizationCoeffs()
{
// combine corner coeffs
for (int i = 0; i < laserCloudCornerLastDSNum; ++i)
{
if (laserCloudOriCornerFlag[i] == true)
{
laserCloudOri->push_back(laserCloudOriCornerVec[i]);
coeffSel->push_back(coeffSelCornerVec[i]);
}
}
// combine surf coeffs
for (int i = 0; i < laserCloudSurfLastDSNum; ++i)
{
if (laserCloudOriSurfFlag[i] == true)
{
laserCloudOri->push_back(laserCloudOriSurfVec[i]);
coeffSel->push_back(coeffSelSurfVec[i]);
}
}
// reset flag for next iteration
std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
}
// 高斯牛顿优化, 参考LOAM
bool LMOptimization(int iterCount)
{
// This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
// lidar <- camera --- camera <- lidar
// x = z --- x = y
// y = x --- y = z
// z = y --- z = x
// roll = yaw --- roll = pitch
// pitch = roll --- pitch = yaw
// yaw = pitch --- yaw = roll
// lidar -> camera
float srx = sin(transformTobeMapped[1]);
float crx = cos(transformTobeMapped[1]);
float sry = sin(transformTobeMapped[2]);
float cry = cos(transformTobeMapped[2]);
float srz = sin(transformTobeMapped[0]);
float crz = cos(transformTobeMapped[0]);
// 初次优化时,特征值门限设置为50,小于这个值认为是退化了,修改matX,matX=matP*matX2
int laserCloudSelNum = laserCloudOri->size();
if (laserCloudSelNum < 50)
{
return false;
}
cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0));
cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0));
cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0));
cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0));
cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
cv::Mat matP(6, 6, CV_32F, cv::Scalar::all(0));
PointType pointOri, coeff;
for (int i = 0; i < laserCloudSelNum; i++)
{
// lidar -> camera
pointOri.x = laserCloudOri->points[i].y;
pointOri.y = laserCloudOri->points[i].z;
pointOri.z = laserCloudOri->points[i].x;
// lidar -> camera
coeff.x = coeffSel->points[i].y;
coeff.y = coeffSel->points[i].z;
coeff.z = coeffSel->points[i].x;
coeff.intensity = coeffSel->points[i].intensity;
// in camera
// 计算雅克比
float arx = (crx * sry * srz * pointOri.x + crx * crz * sry * pointOri.y - srx * sry * pointOri.z) * coeff.x + (-srx * srz * pointOri.x - crz * srx * pointOri.y - crx * pointOri.z) * coeff.y + (crx * cry * srz * pointOri.x + crx * cry * crz * pointOri.y - cry * srx * pointOri.z) * coeff.z;
float ary = ((cry * srx * srz - crz * sry) * pointOri.x + (sry * srz + cry * crz * srx) * pointOri.y + crx * cry * pointOri.z) * coeff.x + ((-cry * crz - srx * sry * srz) * pointOri.x + (cry * srz - crz * srx * sry) * pointOri.y - crx * sry * pointOri.z) * coeff.z;
float arz = ((crz * srx * sry - cry * srz) * pointOri.x + (-cry * crz - srx * sry * srz) * pointOri.y) * coeff.x + (crx * crz * pointOri.x - crx * srz * pointOri.y) * coeff.y + ((sry * srz + cry * crz * srx) * pointOri.x + (crz * sry - cry * srx * srz) * pointOri.y) * coeff.z;
// lidar -> camera
matA.at<float>(i, 0) = arz;
matA.at<float>(i, 1) = arx;
matA.at<float>(i, 2) = ary;
matA.at<float>(i, 3) = coeff.z;
matA.at<float>(i, 4) = coeff.x;
matA.at<float>(i, 5) = coeff.y;
matB.at<float>(i, 0) = -coeff.intensity;
}
cv::transpose(matA, matAt);
matAtA = matAt * matA;
matAtB = matAt * matB;
cv::solve(matAtA, matAtB, matX, cv::DECOMP_QR);
if (iterCount == 0)
{
cv::Mat matE(1, 6, CV_32F, cv::Scalar::all(0));
cv::Mat matV(6, 6, CV_32F, cv::Scalar::all(0));
cv::Mat matV2(6, 6, CV_32F, cv::Scalar::all(0));
cv::eigen(matAtA, matE, matV);
matV.copyTo(matV2);
isDegenerate = false;
float eignThre[6] = {100, 100, 100, 100, 100, 100};
for (int i = 5; i >= 0; i--)
{
if (matE.at<float>(0, i) < eignThre[i])
{
for (int j = 0; j < 6; j++)
{
matV2.at<float>(i, j) = 0;
}
isDegenerate = true;
}
else
{
break;
}
}
matP = matV.inv() * matV2;
}
if (isDegenerate)
{
cv::Mat matX2(6, 1, CV_32F, cv::Scalar::all(0));
matX.copyTo(matX2);
matX = matP * matX2;
}
transformTobeMapped[0] += matX.at<float>(0, 0);
transformTobeMapped[1] += matX.at<float>(1, 0);
transformTobeMapped[2] += matX.at<float>(2, 0);
transformTobeMapped[3] += matX.at<float>(3, 0);
transformTobeMapped[4] += matX.at<float>(4, 0);
transformTobeMapped[5] += matX.at<float>(5, 0);
float deltaR = sqrt(
pow(pcl::rad2deg(matX.at<float>(0, 0)), 2) +
pow(pcl::rad2deg(matX.at<float>(1, 0)), 2) +
pow(pcl::rad2deg(matX.at<float>(2, 0)), 2));
float deltaT = sqrt(
pow(matX.at<float>(3, 0) * 100, 2) +
pow(matX.at<float>(4, 0) * 100, 2) +
pow(matX.at<float>(5, 0) * 100, 2));
// 在判断是否是有效的优化时,要求旋转部分的模长小于0.05m,平移部分的模长也小于0.05度
if (deltaR < 0.05 && deltaT < 0.05)
{
return true; // converged
}
return false; // keep optimizing
}
// 更新 transformTobeMapped
void transformUpdate()
{
// IMU可用的话更新transformTobeMapped
if (cloudInfo.imuAvailable == true)
{
if (std::abs(cloudInfo.imuPitchInit) < 1.4)
{
double imuWeight = imuRPYWeight;
tf::Quaternion imuQuaternion;
tf::Quaternion transformQuaternion;
double rollMid, pitchMid, yawMid;
// slerp roll
transformQuaternion.setRPY(transformTobeMapped[0], 0, 0);
imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
// 线性插值
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
transformTobeMapped[0] = rollMid;
// slerp pitch
transformQuaternion.setRPY(0, transformTobeMapped[1], 0);
imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
transformTobeMapped[1] = pitchMid;
}
}
transformTobeMapped[0] = constraintTransformation(transformTobeMapped[0], rotation_tollerance);
transformTobeMapped[1] = constraintTransformation(transformTobeMapped[1], rotation_tollerance);
transformTobeMapped[5] = constraintTransformation(transformTobeMapped[5], z_tollerance);
incrementalOdometryAffineBack = trans2Affine3f(transformTobeMapped);
}
// 添加各种因子,并进行位姿求解
void saveKeyFramesAndFactor()
{
if (saveFrame() == false)
return;
// 添加各种factor、保存关键帧
// odom factor
addOdomFactor();
// gps factor
addGPSFactor();
// loop factor
addLoopFactor();
// cout << "****************************************************" << endl;
// gtSAMgraph.print("GTSAM Graph:\n");
// update iSAM
isam->update(gtSAMgraph, initialEstimate);
isam->update();
if (aLoopIsClosed == true)
{
isam->update();
isam->update();
isam->update();
isam->update();
isam->update();
}
gtSAMgraph.resize(0);
initialEstimate.clear();
//save key poses
PointType thisPose3D;
PointTypePose thisPose6D;
Pose3 latestEstimate;
// 优化后的pose
isamCurrentEstimate = isam->calculateEstimate();
latestEstimate = isamCurrentEstimate.at<Pose3>(isamCurrentEstimate.size() - 1);
// cout << "****************************************************" << endl;
// isamCurrentEstimate.print("Current estimate: ");
// 将估计出的位姿添加到到cloudKeyPoses3D、cloudKeyPoses6D中
thisPose3D.x = latestEstimate.translation().x();
thisPose3D.y = latestEstimate.translation().y();
thisPose3D.z = latestEstimate.translation().z();
thisPose3D.intensity = cloudKeyPoses3D->size(); // this can be used as index
cloudKeyPoses3D->push_back(thisPose3D);
thisPose6D.x = thisPose3D.x;
thisPose6D.y = thisPose3D.y;
thisPose6D.z = thisPose3D.z;
thisPose6D.intensity = thisPose3D.intensity; // this can be used as index
thisPose6D.roll = latestEstimate.rotation().roll();
thisPose6D.pitch = latestEstimate.rotation().pitch();
thisPose6D.yaw = latestEstimate.rotation().yaw();
thisPose6D.time = timeLaserInfoCur;
cloudKeyPoses6D->push_back(thisPose6D);
// cout << "****************************************************" << endl;
// cout << "Pose covariance:" << endl;
// cout << isam->marginalCovariance(isamCurrentEstimate.size()-1) << endl << endl;
// 边缘化得到每个变量的协方差
poseCovariance = isam->marginalCovariance(isamCurrentEstimate.size() - 1);
// save updated transform
transformTobeMapped[0] = latestEstimate.rotation().roll();
transformTobeMapped[1] = latestEstimate.rotation().pitch();
transformTobeMapped[2] = latestEstimate.rotation().yaw();
transformTobeMapped[3] = latestEstimate.translation().x();
transformTobeMapped[4] = latestEstimate.translation().y();
transformTobeMapped[5] = latestEstimate.translation().z();
// save all the received edge and surf points
pcl::PointCloud<PointType>::Ptr thisCornerKeyFrame(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr thisSurfKeyFrame(new pcl::PointCloud<PointType>());
pcl::copyPointCloud(*laserCloudCornerLastDS, *thisCornerKeyFrame);
pcl::copyPointCloud(*laserCloudSurfLastDS, *thisSurfKeyFrame);
// save key frame cloud
cornerCloudKeyFrames.push_back(thisCornerKeyFrame);
surfCloudKeyFrames.push_back(thisSurfKeyFrame);
// save path for visualization
updatePath(thisPose6D);
}
// 激光里程计
void addOdomFactor()
{
if (cloudKeyPoses3D->points.empty())
{
// 第一帧进来时初始化gtsam参数
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-2, 1e-2, M_PI * M_PI, 1e8, 1e8, 1e8).finished()); // rad*rad, meter*meter
// 先验因子
gtSAMgraph.add(PriorFactor<Pose3>(0, trans2gtsamPose(transformTobeMapped), priorNoise));
initialEstimate.insert(0, trans2gtsamPose(transformTobeMapped));
}
else
{
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
gtsam::Pose3 poseFrom = pclPointTogtsamPose3(cloudKeyPoses6D->points.back());
gtsam::Pose3 poseTo = trans2gtsamPose(transformTobeMapped);
// 二元因子
gtSAMgraph.add(BetweenFactor<Pose3>(cloudKeyPoses3D->size() - 1, cloudKeyPoses3D->size(), poseFrom.between(poseTo), odometryNoise));
initialEstimate.insert(cloudKeyPoses3D->size(), poseTo);
}
}
// gps里程计
void addGPSFactor()
{
if (gpsQueue.empty())
return;
// wait for system initialized and settles down
if (cloudKeyPoses3D->points.empty())
return;
else
{
if (pointDistance(cloudKeyPoses3D->front(), cloudKeyPoses3D->back()) < 5.0)
return;
}
// pose covariance small, no need to correct
// 当估计出的位置协方差较小,没必要用gps优化
if (poseCovariance(3, 3) < poseCovThreshold && poseCovariance(4, 4) < poseCovThreshold)
return;
// last gps position
static PointType lastGPSPoint;
while (!gpsQueue.empty())
{
// 时间戳对齐
if (gpsQueue.front().header.stamp.toSec() < timeLaserInfoCur - 0.2)
{
// message too old
gpsQueue.pop_front();
}
else if (gpsQueue.front().header.stamp.toSec() > timeLaserInfoCur + 0.2)
{
// message too new
break;
}
else
{
nav_msgs::Odometry thisGPS = gpsQueue.front();
gpsQueue.pop_front();
// GPS too noisy, skip
float noise_x = thisGPS.pose.covariance[0];
float noise_y = thisGPS.pose.covariance[7];
float noise_z = thisGPS.pose.covariance[14];
if (noise_x > gpsCovThreshold || noise_y > gpsCovThreshold)
continue;
float gps_x = thisGPS.pose.pose.position.x;
float gps_y = thisGPS.pose.pose.position.y;
float gps_z = thisGPS.pose.pose.position.z;
if (!useGpsElevation)
{
gps_z = transformTobeMapped[5];
noise_z = 0.01;
}
// GPS not properly initialized (0,0,0)
if (abs(gps_x) < 1e-6 && abs(gps_y) < 1e-6)
continue;
// Add GPS every a few meters
PointType curGPSPoint;
curGPSPoint.x = gps_x;
curGPSPoint.y = gps_y;
curGPSPoint.z = gps_z;
if (pointDistance(curGPSPoint, lastGPSPoint) < 5.0)
continue;
else
lastGPSPoint = curGPSPoint;
// 添加GPS因子
gtsam::Vector Vector3(3);
Vector3 << max(noise_x, 1.0f), max(noise_y, 1.0f), max(noise_z, 1.0f);
noiseModel::Diagonal::shared_ptr gps_noise = noiseModel::Diagonal::Variances(Vector3);
gtsam::GPSFactor gps_factor(cloudKeyPoses3D->size(), gtsam::Point3(gps_x, gps_y, gps_z), gps_noise);
gtSAMgraph.add(gps_factor);
aLoopIsClosed = true;
break;
}
}
}
// 添加回环的因子
void addLoopFactor()
{
if (loopIndexQueue.empty())
return;
for (int i = 0; i < (int)loopIndexQueue.size(); ++i)
{
int indexFrom = loopIndexQueue[i].first;
int indexTo = loopIndexQueue[i].second;
gtsam::Pose3 poseBetween = loopPoseQueue[i];
gtsam::noiseModel::Diagonal::shared_ptr noiseBetween = loopNoiseQueue[i];
gtSAMgraph.add(BetweenFactor<Pose3>(indexFrom, indexTo, poseBetween, noiseBetween));
}
loopIndexQueue.clear();
loopPoseQueue.clear();
loopNoiseQueue.clear();
aLoopIsClosed = true;
}
// 更新优化后的关键帧
void correctPoses()
{
if (cloudKeyPoses3D->points.empty())
return;
if (aLoopIsClosed == true)
{
// clear map cache
laserCloudMapContainer.clear();
// clear path
globalPath.poses.clear();
// update key poses
int numPoses = isamCurrentEstimate.size();
for (int i = 0; i < numPoses; ++i)
{
cloudKeyPoses3D->points[i].x = isamCurrentEstimate.at<Pose3>(i).translation().x();
cloudKeyPoses3D->points[i].y = isamCurrentEstimate.at<Pose3>(i).translation().y();
cloudKeyPoses3D->points[i].z = isamCurrentEstimate.at<Pose3>(i).translation().z();
cloudKeyPoses6D->points[i].x = cloudKeyPoses3D->points[i].x;
cloudKeyPoses6D->points[i].y = cloudKeyPoses3D->points[i].y;
cloudKeyPoses6D->points[i].z = cloudKeyPoses3D->points[i].z;
cloudKeyPoses6D->points[i].roll = isamCurrentEstimate.at<Pose3>(i).rotation().roll();
cloudKeyPoses6D->points[i].pitch = isamCurrentEstimate.at<Pose3>(i).rotation().pitch();
cloudKeyPoses6D->points[i].yaw = isamCurrentEstimate.at<Pose3>(i).rotation().yaw();
updatePath(cloudKeyPoses6D->points[i]);
}
aLoopIsClosed = false;
}
}
void updatePath(const PointTypePose &pose_in)
{
geometry_msgs::PoseStamped pose_stamped;
pose_stamped.header.stamp = ros::Time().fromSec(pose_in.time);
pose_stamped.header.frame_id = odometryFrame;
pose_stamped.pose.position.x = pose_in.x;
pose_stamped.pose.position.y = pose_in.y;
pose_stamped.pose.position.z = pose_in.z;
tf::Quaternion q = tf::createQuaternionFromRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
pose_stamped.pose.orientation.x = q.x();
pose_stamped.pose.orientation.y = q.y();
pose_stamped.pose.orientation.z = q.z();
pose_stamped.pose.orientation.w = q.w();
globalPath.poses.push_back(pose_stamped);
}
// 发布激光里程计
void publishOdometry()
{
// Publish odometry for ROS (global)
nav_msgs::Odometry laserOdometryROS;
laserOdometryROS.header.stamp = timeLaserInfoStamp;
laserOdometryROS.header.frame_id = odometryFrame;
laserOdometryROS.child_frame_id = "odom_mapping";
laserOdometryROS.pose.pose.position.x = transformTobeMapped[3];
laserOdometryROS.pose.pose.position.y = transformTobeMapped[4];
laserOdometryROS.pose.pose.position.z = transformTobeMapped[5];
laserOdometryROS.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
pubLaserOdometryGlobal.publish(laserOdometryROS);
// Publish TF
static tf::TransformBroadcaster br;
tf::Transform t_odom_to_lidar = tf::Transform(tf::createQuaternionFromRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]),
tf::Vector3(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5]));
tf::StampedTransform trans_odom_to_lidar = tf::StampedTransform(t_odom_to_lidar, timeLaserInfoStamp, odometryFrame, "lidar_link");
br.sendTransform(trans_odom_to_lidar);
// Publish odometry for ROS (incremental)
static bool lastIncreOdomPubFlag = false;
static nav_msgs::Odometry laserOdomIncremental; // incremental odometry msg
static Eigen::Affine3f increOdomAffine; // incremental odometry in affine
if (lastIncreOdomPubFlag == false)
{
lastIncreOdomPubFlag = true;
laserOdomIncremental = laserOdometryROS;
increOdomAffine = trans2Affine3f(transformTobeMapped);
}
else
{
Eigen::Affine3f affineIncre = incrementalOdometryAffineFront.inverse() * incrementalOdometryAffineBack;
increOdomAffine = increOdomAffine * affineIncre;
float x, y, z, roll, pitch, yaw;
pcl::getTranslationAndEulerAngles(increOdomAffine, x, y, z, roll, pitch, yaw);
if (cloudInfo.imuAvailable == true)
{
if (std::abs(cloudInfo.imuPitchInit) < 1.4)
{
double imuWeight = 0.1;
tf::Quaternion imuQuaternion;
tf::Quaternion transformQuaternion;
double rollMid, pitchMid, yawMid;
// slerp roll
transformQuaternion.setRPY(roll, 0, 0);
imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
roll = rollMid;
// slerp pitch
transformQuaternion.setRPY(0, pitch, 0);
imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
pitch = pitchMid;
}
}
laserOdomIncremental.header.stamp = timeLaserInfoStamp;
laserOdomIncremental.header.frame_id = odometryFrame;
laserOdomIncremental.child_frame_id = "odom_mapping";
laserOdomIncremental.pose.pose.position.x = x;
laserOdomIncremental.pose.pose.position.y = y;
laserOdomIncremental.pose.pose.position.z = z;
laserOdomIncremental.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
if (isDegenerate)
laserOdomIncremental.pose.covariance[0] = 1;
else
laserOdomIncremental.pose.covariance[0] = 0;
}
pubLaserOdometryIncremental.publish(laserOdomIncremental);
}
void publishFrames()
{
if (cloudKeyPoses3D->points.empty())
return;
// publish key poses
publishCloud(&pubKeyPoses, cloudKeyPoses3D, timeLaserInfoStamp, odometryFrame);
// Publish surrounding key frames
publishCloud(&pubRecentKeyFrames, laserCloudSurfFromMapDS, timeLaserInfoStamp, odometryFrame);
// publish registered key frame
if (pubRecentKeyFrame.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
*cloudOut += *transformPointCloud(laserCloudCornerLastDS, &thisPose6D);
*cloudOut += *transformPointCloud(laserCloudSurfLastDS, &thisPose6D);
publishCloud(&pubRecentKeyFrame, cloudOut, timeLaserInfoStamp, odometryFrame);
}
// publish registered high-res raw cloud
if (pubCloudRegisteredRaw.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
pcl::fromROSMsg(cloudInfo.cloud_deskewed, *cloudOut);
PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
*cloudOut = *transformPointCloud(cloudOut, &thisPose6D);
publishCloud(&pubCloudRegisteredRaw, cloudOut, timeLaserInfoStamp, odometryFrame);
}
// publish path
if (pubPath.getNumSubscribers() != 0)
{/
globalPath.header.stamp = timeLaserInfoStamp;
globalPath.header.frame_id = odometryFrame;
pubPath.publish(globalPath);
}
}
没整明白呢,上边的注释还不太懂,回头再更新
感觉大体上是进行激光里程计的计算,然后将激光里程计,gps的里程计,与回环,对这3个因子进行优化,求出优化后的位姿,作为激光里程计。
开源SLAM系统:LIO-SAM源码解析 http://xchu.net/2020/08/19/51liosam/
https://github.com/TixiaoShan/LIO-SAM/blob/master/src/mapOptmization.cpp