- MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码算法matlab神经网络大数据人工智能深度学习机器学习
目录MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)1项目背景介绍...1项目目标与意义...2项目挑战...3项目特点与创新...5<
- c语言opencv所用库函数,Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略...
weixin_39729272
c语言opencv所用库函数
##关于OpenCV简介##OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和MacOS操作系统上。它轻量级而且高效——由一系列C函数和少量C++类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留
- 数学实验matlab课后习题,数学实验练习题(MATLAB)
沈洲行
数学实验matlab课后习题
注意:在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上).第一次练习题1.求解下列各题:1)30sinlimxmxmxx->-2)(4)cos,1000.0=xmxyey求3)21/20mxedx?(求近似值,可以先用inline定义被积函数,然后用quad命令)4)4224xdxmx+?50x=展开(最高次幂为8).2.对矩阵21102041Am-???=??-??,分别求逆矩阵
- 基于小波变换的数字信号调制识别
yong9990
matlab
基于小波变换的数字信号调制识别,通过matlab实现am_ofdm_classification.m,2926dvbt_table_gen.m,16437guard_interval.m,8441pilot_imag.m,9196pilot_real.m,9308randomization.m,9204sc_ofdm_wavelet.m,3439source.m,8486test_sc1.m,34
- MATLAB安装过程中源文件服务器不可达的核心问题与解决方案
百态老人
matlab服务器php
一、核心问题分析在MATLAB网络安装过程中,源文件服务器不可达可能由以下因素导致:网络连接问题网络不稳定或完全中断,导致安装程序无法访问MathWorks服务器。本地网络配置(如DNS解析错误、代理设置不当)影响连接。防火墙/安全软件拦截操作系统防火墙或第三方防病毒软件(如Symantec、McAfee)可能阻止MATLAB访问必要端口。某些安全软件将安装程序误判为威胁,直接中断连接。VPN或代
- 【教程4>第7章>第23节】基于FPGA的RS(204,188)译码verilog实现7——欧几里得迭代算法模块
fpga和matlab
#第7章·通信—信道编译码fpga开发RS译码欧几里得迭代教程4
目录1.软件版本2.RS译码器逆元欧几里得算法模块原理分析3.RS译码器逆元欧几里得算法模块的verilog实现3.1RS译码器逆元欧几里得算法模块verilog程序3.2程序解析欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》
- 一套基于粒子群优化(PSO)算法的天线波束扫描MATLAB实现方案
pk_xz123456
MATLAB深度学习算法算法matlab人工智能制造开发语言分类
以下是一套基于粒子群优化(PSO)算法的天线波束扫描MATLAB实现方案,包含完整代码、数学原理和详细注释。该方案针对均匀线性阵列(ULA)的波束方向图优化,通过调整阵元相位实现主瓣指向目标方向并抑制旁瓣。%%天线波束扫描的PSO算法实现%作者:DeepSeek%创建日期:2025-06-21%功能:使用PSO优化均匀线性阵列的相位分布,实现波束扫描和旁瓣抑制clc;clear;closeall;
- MATLAB中的size函数
不知更鸟
matlab
**MATLAB中的size函数用于获取矩阵或数组的维度信息,包括行数和列数**。以下是对size函数的详细解析:1.**基本用法**:当仅有一个输出参数时,`s=size(A)`会返回一个行向量,其中第一个元素是矩阵的行数,第二个元素是矩阵的列数Θic-1ΘΘic-2ΘΘic-3Θ。例如,对于二维矩阵`A`,`size(A)`返回的是`[m,n]`,表示`A`是一个`m`行`n`列的矩阵。2.*
- matlab瞬变电磁时域有限差分方法
xx155802862xx
matlab开发语言
瞬变电磁时域有限差分方法MATLAB数值仿真教程程序codelisting/Appendix_A/fdtd_1d_code.m,3184codelisting/Appendix_A/initialize_plotting_parameters.m,836codelisting/Appendix_A/plot_fields.m,353codelisting/Appendix_C/polar_plot
- GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!
机器学习之心
可解释机器学习GRU门控循环单元回归SHAP分析
GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!目录GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!效果一览基本介绍
- VIVADO导出仿真数据到MATLAB中进行分析
FPGA与信号处理
FPGA学习记录VIVADOSIMULATION导出仿真数据TXTMATLAB
VIVADO导出仿真数据到MATLAB中进行分析目录前言一、导出仿真数据需要编写的RTL代码二、MATLAB读入txt文件中的数据三、需要注意的点总结前言在使用XilinxVivado进行FPGA开发时,如何将RTL仿真生成的数据导出,进行进一步分析与可视化,是很多开发者常遇到的问题。Vivado自带仿真工具不支持直接导出仿真数据,但是我们可以通过编写一段简单的RTL代码即可将需要的仿真数据保存到
- MATLAB 实现数据的插值拟合
鱼弦
人工智能时代matlab人工智能算法
MATLAB实现数据的插值拟合1.介绍插值拟合是一种通过已知数据点构建函数或曲线的方法,用于估计未知数据点的值。插值拟合广泛应用于数据分析、信号处理、图像处理等领域。本教程介绍如何使用MATLAB实现数据的插值拟合,并展示其应用场景和代码实现。2.应用使用场景(1)数据分析场景描述:通过插值拟合填补缺失数据,如时间序列数据中的缺失值。代码实现:%定义数据x=[1,2,3,4,5];y=[2,4,5
- 【智能优化算法】多目标于分解的多目标进化算法MOEA/D算法(Matlab代码实现)
荔枝科研社
单多目标智能算法算法matlab开发语言多目标进化算法MOEA/D算法
目录1概述2数学模型3运行结果4参考文献5Matlab代码及详细文章1概述基于分解的多目标进化算法(multiobjectiveevolu-tionaryalgorithmbasedondecomposition,MOEA/D)是一种利用分解策略解决多目标问题的算法2'。该算法通过聚合函数将多目标问题分解为N个子问题,每个子问题分配一个对应的权重和相关种群点的邻域"3'。种群迭代通过邻域内随机选择
- MATLAB App Designer基础教程 Matlab GUI入门(二)
Sunshine_Cherish
学习笔记Matlabmatlab开发语言程序人生
MATLABGUI入门第二天——Lamp(灯)霓虹灯控件的使用一、主要内容:技巧1.Tooltip的使用2.Vislble和Enable3.lf函数语句的使用需求:根据阈值进行提示1.红色温度过高>=500⒉橙色温度适中400~5003.蓝色温度过低=500app.lamp.Color="1,0,0";app.show_tips.Text="温度过高!";elseifvalue=400app.la
- 在Simulink中进行基于蚁群算法优化滤波器带宽的智能控制系统仿真
amy_mhd
算法前端数据库simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义问题与目标示例:定义优化目标步骤2:准备数据集或模拟环境示例:生成测试信号步骤3:设计并实现蚁群算法示例:简单的蚁群算法实现步骤4:创建Simulink模型步骤5:添加滤波器模块示例:添加FIR滤波器步骤6:集成蚁群算法结果示例:MATLABFunctionBlock代码步骤7:设置仿真参数步骤8:运行仿真并分析结果四、总结蚁群算法(Ant
- matlab SAR图像均值滤波
点云侠
matlab与合成孔径雷达matlab均值算法开发语言计算机视觉人工智能算法
目录一、算法原理1、计算过程2、参考文献二、代码实现三、结果展示一、算法原理1、计算过程 SAR图像的均值滤波是将平滑窗口内所有像元的强度值进行平均计算,然后赋给平滑窗口的中心像元,其数学表达式为:Ri,j=1n2∑
- matlab实现大地电磁二维正演
yugi987838
matlab开发语言
大地电磁二维正演程序,在二维平面对介质进行网格剖分,然后利用有限元进行大地电磁二维正演MT2D/2Dmodel.fig,39324MT2D/KK1.m,484MT2D/Ke1.m,254MT2D/Ke2.m,106MT2D/Ke3.m,103MT2D/MT2DMODEL.m,1648MT2D/MT2Dmesh.m,2445MT2D/TEmodel.m,4010MT2D/TMmodel.m,3903
- 基于Matlab的改进人工势场法实现路径规划与避障
bubiyoushang888
matlab
基于Matlab的改进人工势场法实现路径规划与避障circle.m,255compute_angle.m,554compute_Attract.m,305compute_repulsion.m,2606main.m,3021
- 战争策略优化算法(WSO)(Matlab代码实现)
荔枝科研社
单多目标智能算法算法matlab开发语言战争策略优化算法
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2主函数3参考文献4Matlab代码实现1概述战争战略优化(WSO)基于战争期间陆军部队的战略调动。战争策略被建模为一个优化过程,其中每个士兵都动态地向最佳值移动。该算法模拟了两种流行的战争策略,即攻击和防御策略。战场上士兵的位置根据实施的策略进行更新。为了提高算法的收敛
- 使用Simulink结合MATLAB进行基于强化学习控制下的动态滤波器参数调节系统的仿真
amy_mhd
matlab开发语言
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:准备强化学习环境步骤3:训练强化学习代理步骤4:创建Simulink模型步骤5:添加信号源步骤6:合并信号步骤7:导入强化学习代理步骤8:设计滤波器步骤9:可视化结果步骤10:连接各模块步骤11:设置仿真参数步骤12:运行仿真并分析结果四、总结在现代信号处理领域,动态调整滤波器参数以适应不断变化的环境条件是
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- MATLAB光学衍射程序集:从基础到高级应用
叶深深
本文还有配套的精品资源,点击获取简介:MATLAB是科研与工程计算的有力工具,尤其在光学领域模拟和分析中应用广泛。该压缩包包含一系列MATLAB程序,用于研究和模拟光学衍射现象。通过程序,用户可深入理解衍射理论、进行参数调整和结果观察,从而加深对光学衍射现象的认识。程序涉及菲涅尔衍射、夫琅禾费衍射、光栅衍射、波前重建、霍克效应、傅里叶光学以及图形用户界面等。这些资源不仅适用于学术研究,也适合工程应
- 北斗导航 | 基于改进小龙虾优化算法的GPS接收机自主完好性监测算法研究
北斗猿
卫星导航算法matlab
详细介绍基于改进小龙虾优化算法(COA)的GPS接收机自主完好性监测算法的原理、公式和MATLAB实现。主要内容如下:RAIM基础原理与问题定义:介绍最小二乘残差法的数学模型,包括伪距观测方程、故障检测统计量和故障识别方法。改进小龙虾优化算法设计:详细说明COA的三种行为模式及其数学表述,以及三种改进策略(非线性温度更新、自适应视野调整、混合变异机制)。融合改进COA的RAIM算法:阐述种群初始化
- 基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:
资深码侬
matlab无人机开发语言
基于Matlab的四旋翼无人机动力学PID控制仿真,具体内容包括:运用欧拉方程对地面坐标到机体坐标的转换矩阵进行了推导在无人机动力学模型基础上,采用经典PID控制算法对其内环姿态和外环位置进行控制说明文档:①详细推导四旋翼飞行器的数学模型②PID控制器的设计、位置回路控制器设计、姿态回路控制器设计③PID参数调整④仿真结果分析98文章目录**1.四旋翼飞行器的数学模型****旋转矩阵推导****2
- 【MPC】模型预测控制笔记 (6):不确定模型的鲁棒MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言不确定模型稳定性分析MATLAB实例1-忽略微小得模型参数误差MATLAB实例2-忽略模型中的非线性项附录1附录2前言致谢【模型预测控制(2022春)lecture4-2RobustMPC】不确定模型假设系统的真实模型为:xk+1=Axk+B(uk+δ1(xk,uk))+δ2(xk)(1)x_{k+1}=Ax_k+B(u_k+\delta_1(x_k,u_k))+\delta_2(x_k)
- 【MPC】模型预测控制笔记 (4):约束输出反馈MPC
车队老哥记录生活
模型预测控制MPC笔记算法
目录前言一、观测器设计二、输出反馈MPC设计2.1预测模型2.2代价函数设计2.3约束构建2.3.1系统约束2.3.2终端约束2.4构建二次规划求解三、系统稳定性分析3.1构造李雅普诺夫函数3.2证明李雅普诺夫函数递减四、MATLAB实例前言致谢【模型预测控制(2022春)lecture3-2OutputfeedbackMPC】本文需要是使用先前博客的知识,控制器求解参考【MPC】模型预测控制笔记
- matlab读取txt到矩阵,如何在MATLAB中将文本文件中的数据读入矩阵(How to read data from a text file into a matrix in MATLAB)...
akshay_pachaar
matlab读取txt到矩阵
如何在MATLAB中将文本文件中的数据读入矩阵(HowtoreaddatafromatextfileintoamatrixinMATLAB)我在将.txt文件读入单个矩阵时遇到困难,行和列显示在MATLAB的下面文本中。%Q1Q2Q3Q4Q542905525322355708953我将如何创建一个只有来自该文本文件的数字的单个矩阵?值由空格分隔。有19行,但我希望能够在发生更改时使用任意数量的行和
- 基于Split Bregman算法的稀疏图像重建(附带Matlab代码)
代码创造者
算法matlab人工智能Matlab
基于SplitBregman算法的稀疏图像重建(附带Matlab代码)SplitBregman算法是一种用于稀疏图像重建的优化算法,它能够有效地恢复受损的图像并保持重要的细节。本文将详细介绍SplitBregman算法的原理,并提供Matlab代码实现。算法原理SplitBregman算法是一种迭代算法,用于求解具有L1正则化项的优化问题。在图像重建中,我们希望找到一个稀疏表示来恢复受损的图像。该
- 基于模型预测人工势场的船舶运动规划方法,考虑复杂遭遇场景下的COLREG(Matlab代码实现)
荔枝科研社
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2运行结果3参考文献4Matlab代码、文章下载1概述船舶运动规划是海上自主水面船(MASS)自主航行的核心问题。本文提出了一种考虑避碰规则的复杂遭遇场景下的新型模型预测人工势场(MPAPF)运动规划方法。建立了一种新的船舶领域,并设计了一个闭区间势场函数来表示船舶领域的不可
- 基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测
智能算法研学社(Jack旭)
#正则极限学习机(RELM)智能优化算法应用算法回归数据挖掘
基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测文章目录基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于沙猫群算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个训练样
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla