逻辑回归
导入包
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import mutual_info_classif
from imblearn.over_sampling import RandomOverSampler
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from my_tools import *
import warnings
warnings.filterwarnings("ignore")
jibing_res = pd.read_excel("./jibing_feature_res_final.xlsx")
jibing = pd.read_excel("./jibing_feature_final.xlsx")
jibing.head()
|
左右 |
是否外伤 |
症状持续时间 |
明显夜间痛 |
年龄 |
高血压 |
高血脂 |
2型糖尿病 |
吸烟与否 |
饮酒与否 |
... |
腺苷脱氨酶ADA |
果糖胺 |
肌酸激酶 |
α-L-盐藻糖苷酶 |
乳酸 |
淀粉酶 |
同型半胱氨酸 |
铁 |
总铁结合力 |
血型 |
0 |
0 |
0 |
3 |
0 |
65 |
1 |
0 |
0 |
0 |
0 |
... |
10.0 |
1.32 |
48.0 |
12.0 |
1.9 |
49.0 |
9.9 |
12.3 |
43.5 |
3 |
1 |
1 |
1 |
2 |
0 |
62 |
1 |
0 |
0 |
0 |
0 |
... |
10.0 |
1.67 |
77.0 |
16.0 |
1.4 |
81.0 |
9.2 |
16.9 |
55.5 |
0 |
2 |
1 |
0 |
4 |
1 |
55 |
0 |
0 |
0 |
0 |
0 |
... |
15.0 |
1.86 |
78.0 |
22.0 |
1.9 |
89.0 |
9.9 |
7.0 |
51.4 |
0 |
3 |
1 |
0 |
3 |
0 |
60 |
0 |
0 |
0 |
0 |
0 |
... |
16.0 |
1.68 |
92.0 |
12.0 |
1.4 |
69.0 |
9.3 |
15.8 |
53.0 |
0 |
4 |
0 |
1 |
3 |
0 |
61 |
0 |
0 |
0 |
0 |
0 |
... |
13.0 |
1.60 |
58.0 |
14.0 |
1.7 |
153.0 |
8.1 |
13.2 |
45.9 |
0 |
5 rows × 60 columns
jibing_res.head()
归一化
jibing = guiyihua(jibing)
标准化
jibing = biaozhunhua(jibing)
jibing.iloc[0]
左右 0.000000
是否外伤 0.000000
症状持续时间 3.000000
明显夜间痛 0.000000
年龄 0.402864
高血压 1.000000
高血脂 0.000000
2型糖尿病 0.000000
吸烟与否 0.000000
饮酒与否 -0.448892
红细胞计数*10^12/L -0.111242
血红蛋白 -1.262287
红细胞压积 -0.628449
血小板计数 1.836626
血小板压积 -0.016066
总蛋白g/L 0.117665
白蛋白g/L -0.783686
球蛋白g/L 0.892589
白球比 -1.141215
ALT丙氨酸氨基转移酶 -0.955624
碱性磷酸酶 0.577122
谷氨酸转肽酶 -0.458009
AST:ALT 1.972187
总胆红素 -0.567388
直接胆红素 0.058454
间接胆红素 -0.700329
钾 1.331665
钠 -0.154827
氯 -0.203053
钙 -1.011273
磷 -0.094543
镁 1.419808
葡萄糖 -0.813153
肌酐 0.219459
尿素 0.950509
尿酸 -0.222815
甘油三酯 0.111053
总胆固醇 0.102856
H高密度胆固醇 0.085759
L低密度胆固醇 0.101836
载脂蛋白A1 -0.047968
载脂蛋白B 0.763163
载脂蛋白E mg/l -0.397325
aPoB/aPoA1 0.073904
脂蛋白小a -0.059640
乳酸脱氢酶LDH -1.057407
β-2微球蛋白 1.273672
胆碱酯酶 -1.187449
前白蛋白mg/l 0.070510
总胆汁酸 -0.415554
腺苷脱氨酶ADA -0.396787
果糖胺 -0.160764
肌酸激酶 -0.176406
α-L-盐藻糖苷酶 -1.241122
乳酸 0.269307
淀粉酶 -0.755958
同型半胱氨酸 -0.420427
铁 -0.880622
总铁结合力 -1.226099
血型 3.000000
Name: 0, dtype: float64
为解决样本不均衡问题
使用 SMOTE 补充数据
SMOTE:插值的方法扩充数据
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from imblearn.over_sampling import SMOTE
f1_list = []
set_font()
for i in range(1,60):
smote = SMOTE(sampling_strategy=1, random_state=42)
selector = SelectKBest(mutual_info_classif, k=i)
jibing_ = selector.fit_transform(jibing, jibing_res)
Xtrain,Xtest,Ytrain,Ytest = train_test_split(jibing_,jibing_res,test_size=0.3,random_state=42)
Xtrain, Ytrain = smote.fit_resample(Xtrain,Ytrain)
clf = LogisticRegression(random_state=42)
clf.fit(Xtrain, Ytrain)
y_pre = clf.predict(Xtest)
metrics_ = res_metrics(Ytest,y_pre,"调参")
f1_list.append(metrics_["f1-score"])
zhexiantu(range(1,60),f1_list,"f1 - 特征筛选")
发现 f1-score 的最高值出现在 0-10 之间
f1_list=[]
for i in range(5,11):
smote = SMOTE(sampling_strategy=1, random_state=42)
selector = SelectKBest(mutual_info_classif, k=i)
jibing_ = selector.fit_transform(jibing, jibing_res)
Xtrain,Xtest,Ytrain,Ytest = train_test_split(jibing_,jibing_res,test_size=0.3,random_state=42)
Xtrain, Ytrain = smote.fit_resample(Xtrain,Ytrain)
clf = LogisticRegression(random_state=42)
clf.fit(Xtrain, Ytrain)
y_pre = clf.predict(Xtest)
metrics_ = res_metrics(Ytest,y_pre,"调参")
f1_list.append(metrics_["f1-score"])
zhexiantu(range(5,11),f1_list,"f1 - 特征筛选")
选取最佳的6个特征进行训练,K = 6
smote = SMOTE(sampling_strategy=1, random_state=42)
selector = SelectKBest(mutual_info_classif, k=6)
jibing_ = selector.fit_transform(jibing, jibing_res)
Xtrain,Xtest,Ytrain,Ytest = train_test_split(jibing_,jibing_res,test_size=0.3,random_state=42)
Xtrain, Ytrain = smote.fit_resample(Xtrain,Ytrain)
clf = LogisticRegression(random_state=42)
clf.fit(Xtrain, Ytrain)
y_pre = clf.predict(Xtest)
metrics_ = res_metrics(Ytest,y_pre,"f1 - k=6")
#####################f1 - k=6#####################
+--------------------+--------------------+--------------------+
| precision | recall | f1 |
+--------------------+--------------------+--------------------+
| 0.8265539116030419 | 0.6724137931034483 | 0.7415586728925839 |
+--------------------+--------------------+--------------------+
尝试降维
PCA
f1_list = []
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
for i in range(1,6):
clf = LogisticRegression(random_state=42)
pca = PCA(n_components=i,random_state=42)
Xtrain_ = pca.fit_transform(Xtrain,Ytrain)
clf.fit(Xtrain_, Ytrain)
Xtest_ = pca.fit_transform(Xtest)
y_pre = clf.predict(Xtest_)
metrics_ = res_metrics(Ytest,y_pre,"调参")
f1_list.append(metrics_["f1-score"])
zhexiantu(range(1,6),f1_list,"f1 - PCA")
f1_list = []
from sklearn.manifold import TSNE
for i in range(1,4):
clf = LogisticRegression(random_state=42)
tsne = TSNE(n_components=i,random_state=42)
Xtrain_ = tsne.fit_transform(Xtrain,Ytrain)
clf.fit(Xtrain_, Ytrain)
Xtest_ = tsne.fit_transform(Xtest)
y_pre = clf.predict(Xtest_)
metrics_ = res_metrics(Ytest,y_pre,"调参")
f1_list.append(metrics_["f1-score"])
zhexiantu(range(1,4),f1_list,"tsne - F1")
放弃降维,直接使用 K = 6 的特征筛选
smote = SMOTE(sampling_strategy=1, random_state=42)
selector = SelectKBest(mutual_info_classif, k=6)
jibing_ = selector.fit_transform(jibing, jibing_res)
Xtrain,Xtest,Ytrain,Ytest = train_test_split(jibing_,jibing_res,test_size=0.3,random_state=42)
Xtrain, Ytrain = smote.fit_resample(Xtrain,Ytrain)
clf = LogisticRegression(random_state=42)
clf.fit(Xtrain, Ytrain)
y_pre = clf.predict(Xtest)
metrics_ = res_metrics(Ytest,y_pre,"逻辑回归-特征筛选")
####################逻辑回归-特征筛选#####################
+--------------------+--------------------+--------------------+
| precision | recall | f1 |
+--------------------+--------------------+--------------------+
| 0.8263447971781305 | 0.7068965517241379 | 0.7619678246723789 |
+--------------------+--------------------+--------------------+
最高的 f1-score 为0.76