【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换)
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


8.1 秩1矩阵

A = ( a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋱ ⋮ a n b 1 a n b 2 ⋯ a n b n ) n × n = ( a 1 a 2 ⋮ a n ) ( b 1 b 2 ⋯ b n ) = Δ α β T 其中 α = ( a 1 a 2 ⋮ a n ) , β = ( b 1 b 2 ⋮ b n ) \begin{aligned} A&=\left( \begin{matrix} a_1b_1\quad &a_1b_2\quad &\cdots\quad &a_1b_n\\ a_2b_1\quad &a_2b_2\quad &\cdots\quad &a_2b_n\\ \vdots\quad &\vdots\quad &\ddots\quad &\vdots\\ a_nb_1\quad &a_nb_2\quad &\cdots\quad &a_nb_n \end{matrix} \right)_{n\times n}=\left( \begin{matrix} a_1\\a_2\\\vdots \\a_n \end{matrix} \right)\left( b_1\quad b_2\quad \cdots \quad b_n \right)\overset{\Delta}{=}\alpha \beta^{T}\\\\ &其中 \alpha=\left( \begin{matrix} a_1\\a_2\\\vdots \\a_n \end{matrix} \right),\beta=\left( \begin{matrix} b_1\\b_2\\\vdots \\b_n \end{matrix} \right) \end{aligned} A= a1b1a2b1anb1a1b2a2b2anb2a1bna2bnanbn n×n= a1a2an (b1b2bn)=ΔαβT其中α= a1a2an ,β= b1b2bn

8.1.1 秩1矩阵特征方程

∣ λ I n − A ∣ = ∣ λ I n − α n × 1 β 1 × n T ∣ = 换位公式 : ∣ λ n − ( A B ) n ∣ = λ n − p ∣ λ I p − ( B A ) p ∣ λ n − 1 ∣ λ I 1 − β 1 × n T α n × 1 I 1 ∣ = λ n − 1 ( λ I − t r ( A ) ) , 其中 t r ( A ) = ∑ i = 1 n a i i b i i \begin{aligned} &\mid \lambda I_n-A\mid = \mid \lambda I_n-\alpha_{n\times 1}\beta_{1\times n}^T\mid\xlongequal{换位公式:\vert\lambda_n-(AB)_n \vert=\lambda^{n-p}\vert \lambda I_p-(BA)_p\vert}\lambda^{n-1}\mid\lambda I_1-\beta_{1\times n}^T\alpha_{n\times 1}I_1\mid\\ &=\lambda^{n-1}(\lambda I-tr(A)),其中 tr(A)=\sum\limits_{i=1}\limits^{n}a_{ii}b_{ii} \end{aligned} λInA∣=∣λInαn×1β1×nT换位公式:λn(AB)n=λnpλIp(BA)p λn1λI1β1×nTαn×1I1=λn1(λItr(A)),其中tr(A)=i=1naiibii

eg

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第1张图片

8.1.2 秩1矩阵的特征值

A = A n × n A = A_{n\times n} A=An×n r ( A ) = 1 r(A)=1 r(A)=1 ,则全体特征值为 λ ( A ) = { t r ( A ) , 0 , . . . , 0 } \lambda(A)=\{tr(A),0,...,0\} λ(A)={tr(A),0,...,0} ,其中 t r ( A ) = a 1 b 1 + a 2 b 2 + . . . + a n b n = β T α tr(A)=a_1b_1+a_2b_2+...+a_nb_n=\beta^T\alpha tr(A)=a1b1+a2b2+...+anbn=βTα

证明:

由换位公式可知, α n × 1 β 1 × n T \alpha_{n\times 1}\beta_{1\times n}^T αn×1β1×nT β 1 × n T α n × 1 \beta_{1\times n}^T\alpha_{n\times 1} β1×nTαn×1 相差 n-1 个零根,即有一个相等的非零特征根,而 β 1 × n T α n × 1 \beta_{1\times n}^T\alpha_{n\times 1} β1×nTαn×1 为1阶矩阵,所以 λ 1 = β 1 × n T α n × 1 = a 1 b 1 + a 2 b 2 + . . . + a n b n = t r ( A ) \lambda_1=\beta_{1\times n}^T\alpha_{n\times 1}=a_1b_1+a_2b_2+...+a_nb_n=tr(A) λ1=β1×nTαn×1=a1b1+a2b2+...+anbn=tr(A)

8.1.3 秩1矩阵特征向量

A = α β T A=\alpha \beta^T A=αβT 的列向量都是 λ 1 = t r ( A ) \lambda_1=tr(A) λ1=tr(A) 的特征向量

证明:
A α = ( α β ) α = λ 1 α \begin{aligned} A\alpha = (\alpha \beta)\alpha=\lambda_1 \alpha \end{aligned} Aα=(αβ)α=λ1α

eg

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第2张图片

A 为秩 1 矩阵, λ ( A ) = { t r ( A ) , 0 , 0 } = { − 2 , 0 , 0 } 可知 ∣ λ I − A ∣ = x 2 ( x + 2 ) , 其中 λ 1 = − 2 , 可取 ( 1 1 2 ) 为 A 的特向, A ( 1 1 2 ) = − 2 ( 1 1 2 ) \begin{aligned} &A为秩1矩阵,\lambda(A)=\{tr(A),0,0\}=\{-2,0,0\}\\ &可知 \vert \lambda I-A\vert=x^2(x+2),其中\lambda_1=-2,可取\left(\begin{matrix}1\\1\\2\end{matrix}\right)为A的特向,A\left(\begin{matrix}1\\1\\2\end{matrix}\right)=-2\left(\begin{matrix}1\\1\\2\end{matrix}\right) \end{aligned} A为秩1矩阵,λ(A)={tr(A),0,0}={2,0,0}可知λIA=x2(x+2),其中λ1=2,可取 112 A的特向,A 112 =2 112


【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第3张图片

A 为秩 1 矩阵,全体特根 λ ( A ) = { t r ( A ) , 0 , 0 } = { 9 , 0 , 0 } , 可知 ∣ λ I − A ∣ = λ 2 ( λ − 9 ) λ 1 = 9 , 可知 A 的列向量 ( 1 1 − 1 ) 为一个特向, A ( 1 1 − 1 ) = 9 ( 1 1 − 1 ) \begin{aligned} &A为秩1矩阵,全体特根\lambda(A)=\{tr(A),0,0\}=\{9,0,0\},可知 \vert \lambda I-A\vert=\lambda^2(\lambda-9)\\ &\lambda_1=9,可知A的列向量\left(\begin{matrix}1\\1\\-1\end{matrix}\right)为一个特向,A\left(\begin{matrix}1\\1\\-1\end{matrix}\right)=9\left(\begin{matrix}1\\1\\-1\end{matrix}\right) \end{aligned} A为秩1矩阵,全体特根λ(A)={tr(A),0,0}={9,0,0},可知λIA=λ2(λ9)λ1=9,可知A的列向量 111 为一个特向,A 111 =9 111

8.2 优阵(正交阵)

预:非单位列向量

半: p p p n n n 维列向量 ( p < n ) (p(p<n)

8.2.1 预-半优阵(预-半正交阵)

α 1 , α 2 , ⋯   , α p \alpha_1,\alpha_2,\cdots,\alpha_p α1,α2,,αp n n n 维列向量,且 p ≤ n p\le n pn ,且 α 1 ⊥ α 2 ⊥ ⋯ ⊥ α p \alpha_1\bot\alpha_2\bot \cdots\bot\alpha_p α1α2αp
,则称 A = ( α 1 , α 2 , ⋯   , α p ) A=(\alpha_1,\alpha_2,\cdots,\alpha_p) A=(α1,α2,,αp) 为预半优阵

判定

A = ( α 1 , α 2 , ⋯   , α p ) A=(\alpha_1,\alpha_2,\cdots,\alpha_p) A=(α1,α2,,αp) 是预半优阵    ⟺    A H A = ( ( α 1 , α 1 ) ⋯ 0 ⋮ ⋱ 0 0 ⋯ ( α p , α p ) ) \iff A^HA=\left( \begin{matrix} (\alpha_1,\alpha_1)&\cdots&0\\ \vdots&\ddots&0\\ 0&\cdots&(\alpha_p,\alpha_p) \end{matrix} \right) AHA= (α1,α1)000(αp,αp) 是对角阵,其中 α 1 , α 2 , ⋯   , α p \alpha_1,\alpha_2,\cdots,\alpha_p α1,α2,,αp n n n 维列向量

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第4张图片

区分 A H A A^HA AHA p × p p \times p p×p 阶满秩方阵,而 A A H AA^H AAH n × n n\times n n×n 不满秩方阵

8.2.2 半优阵(半正交阵)

A = ( α 1 , α 2 , ⋯   , α p ) A=(\alpha_1,\alpha_2,\cdots,\alpha_p) A=(α1,α2,,αp) 是预半优阵,其中 α i \alpha_i αi n n n 维列向量,若满足 ∣ α 1 ∣ = ∣ α 2 ∣ = ⋯ = ∣ α p ∣ = 1 \vert \alpha_1 \vert=\vert \alpha_2 \vert=\cdots=\vert \alpha_p \vert = 1 α1=α2==αp=1 ,则A为半优阵

判定

A = ( α 1 , ⋯   , α p ) A=(\alpha_1,\cdots,\alpha_p) A=(α1,,αp) 是半优阵    ⟺    α 1 ⊥ ⋯ ⊥ α p \iff \alpha_1\bot\cdots\bot\alpha_p α1αp ,且 ∣ α 1 ∣ = ⋯ = ∣ α p ∣ = 1 \vert \alpha_1 \vert=\cdots=\vert \alpha_p \vert=1 α1==αp=1    ⟺    A H A = I p \iff A^HA=I_{p} AHA=Ip

性质

  1. 保模长 A为半优阵,则 ∣ A x ∣ 2 = ∣ x ∣ 2 \vert Ax \vert^2=\vert x \vert^2 Ax2=x2

    ∣ A x ∣ 2 = ( A x ) H ( A x ) = x H A H A x = ∣ X ∣ 2 \vert Ax \vert^2=(Ax)^H(Ax)=x^HA^HAx=\vert X\vert^2 Ax2=(Ax)H(Ax)=xHAHAx=X2

  2. 保正交 A为半优阵, x ⊥ y x\bot y xy ,则 A x ⊥ A y Ax\bot Ay AxAy

8.2.3 预优阵(预-单位正交阵)

α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn n n n 维列向量,且 α 1 ⊥ α 2 ⊥ ⋯ ⊥ α n \alpha_1\bot\alpha_2\bot\cdots\bot\alpha_n α1α2αn ,则 A = ( α 1 , α 2 , ⋯   , α n ) A=(\alpha_1,\alpha_2,\cdots,\alpha_n) A=(α1,α2,,αn) 是预优阵

eg
X 1 = ( 1 i i ) , X 2 = ( 2 i 1 1 ) , X 3 = ( 0 1 − 1 ) ( X 1 , X 2 ) = 0 , ( X 2 , X 3 ) = 0 , ( X 1 , X 3 ) = 0 , ∴ X 1 ⊥ X 2 ⊥ X 3 , A = ( X 1 , X 2 , X 3 ) 是预 − 优阵 \begin{aligned} &X_1=\left( \begin{matrix} 1\\i\\i \end{matrix} \right),X_2=\left( \begin{matrix} 2i\\1\\1 \end{matrix} \right),X_3=\left( \begin{matrix} 0\\1\\-1 \end{matrix} \right)\\\\ &(X_1,X_2)=0,(X_2,X_3)=0,(X_1,X_3)=0,\\\\ &\therefore X_1\bot X_2\bot X_3,A=(X_1,X_2,X_3)是预-优阵 \end{aligned} X1= 1ii ,X2= 2i11 ,X3= 011 (X1,X2)=0,(X2,X3)=0,(X1,X3)=0,X1X2X3,A=(X1,X2,X3)是预优阵

判定
A = ( α 1 , α 2 , ⋯   , α n )    ⟺    A H A = ( ( α 1 , α 1 ) ⋯ 0 ⋮ ⋱ 0 0 ⋯ ( α n , α n ) ) 是对角阵 其中, α 1 , α 2 , ⋯   , α p 是 n 维列向量 \begin{aligned} A&=(\alpha_1,\alpha_2,\cdots,\alpha_n)\\ &\iff A^HA=\left( \begin{matrix} (\alpha_1,\alpha_1)&\cdots&0\\ \vdots&\ddots&0\\ 0&\cdots&(\alpha_n,\alpha_n) \end{matrix} \right)是对角阵\\ &其中,\alpha_1,\alpha_2,\cdots,\alpha_p是n维列向量 \end{aligned} A=(α1,α2,,αn)AHA= (α1,α1)000(αn,αn) 是对角阵其中,α1,α2,,αpn维列向量

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第5张图片

8.2.4 优阵(正交阵)

α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn n n n 维列向量, α 1 ⊥ α 2 ⊥ ⋯ ⊥ α n \alpha_1\bot\alpha_2\bot\cdots\bot\alpha_n α1α2αn ∣ α 1 ∣ = ⋯ = ∣ α n ∣ = 1 \vert \alpha_1 \vert=\cdots=\vert \alpha_n \vert=1 α1==αn=1 ,则 A A A 是一个优阵(正交阵)

a. 判定

A = ( α 1 , ⋯   , α n )    ⟺    A H A = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) = I 是单位阵 \begin{aligned} A&=(\alpha_1,\cdots,\alpha_n)\\ &\iff A^HA=\left( \begin{matrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{matrix} \right)=I是单位阵 \end{aligned} A=(α1,,αn)AHA= 100010001 =I是单位阵

  • A = A n × n A=A_{n\times n} A=An×n 为优阵( A H A = I A^HA=I AHA=I),即 A A A 的列向量 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 为单位正交向量组
  • A − 1 = A H A^{-1}=A^H A1=AH
  • A H A = I , 且 A A H = I A^HA=I,且AA^H=I AHA=I,AAH=I
  1. A A A 是优阵    ⟺    A H A = I    ⟺    A − 1 A = I    ⟺    A A H = I \iff A^HA=I\iff A^{-1}A=I\iff AA^H=I AHA=IA1A=IAAH=I    ⟺    A = ( α 1 , α 2 , ⋯   , α n ) \iff A=(\alpha_1,\alpha_2,\cdots,\alpha_n) A=(α1,α2,,αn) ,且 α 1 ⊥ α 2 , ⋯ ⊥ α n \alpha_1\bot\alpha_2,\cdots\bot\alpha_n α1α2,αn ∣ α 1 ∣ = ⋯ = ∣ α n ∣ = 1 \vert \alpha_1\vert=\cdots=\vert\alpha_n\vert=1 α1==αn=1

  2. ∣ A x ∣ 2 = ∣ x ∣ 2 \vert Ax\vert^2=\vert x \vert^2 Ax2=x2 A A A 是优阵
    ∵ ∣ A x ∣ 2 = ( A x ) H ( A x ) = x H A H A x = x H I x = ( x , x ) = ∣ x ∣ 2 \because \vert Ax\vert^2 = (Ax)^H(Ax)=x^HA^HAx=x^HIx=(x,x)=\vert x \vert^2 Ax2=(Ax)H(Ax)=xHAHAx=xHIx=(x,x)=x2

  3. x ⊥ y ⇒ A x ⊥ A y x\bot y \Rightarrow Ax\bot Ay xyAxAy A A A 是优阵
    ∵ ( A x , A y ) = ( A y ) H A x = y H A H A x = ( x , y ) = 0    ⟺    A x ⊥ A y \because (Ax,Ay)=(Ay)^HAx=y^HA^HAx=(x,y)=0\iff Ax\bot Ay (Ax,Ay)=(Ay)HAx=yHAHAx=(x,y)=0AxAy

  4. ( A x , A y ) = ( x , y ) (Ax,Ay)=(x,y) (Ax,Ay)=(x,y) A A A 是优阵

b. 优阵构造

预优阵到优阵

A = ( α 1 , ⋯   , α n ) A=(\alpha_1,\cdots,\alpha_n) A=(α1,,αn) 是预优阵 ⇒ A = ( α 1 ∣ α 1 ∣ , α 2 ∣ α 2 ∣ , ⋯   , α n ∣ α n ∣ ) \Rightarrow A=(\frac{\alpha_1}{\vert \alpha_1\vert},\frac{\alpha_2}{\vert \alpha_2\vert},\cdots,\frac{\alpha_n}{\vert \alpha_n \vert}) A=(α1α1,α2α2,,αnαn) 是优阵

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第6张图片

优阵到优阵

A = ( α 1 , α 2 , ⋯   , α n ) A=(\alpha_1,\alpha_2,\cdots,\alpha_n) A=(α1,α2,,αn) 为优阵,则

  1. k = ± 1 , k A = ( k α 1 , k α 2 , ⋯   , k α n ) k=\pm1,kA=(k\alpha_1,k\alpha_2,\cdots,k\alpha_n) k=±1,kA=(kα1,kα2,,kαn) 为优阵
  2. B = ( β 1 , β 2 , ⋯   , β n ) B=(\beta_1,\beta_2,\cdots,\beta_n) B=(β1,β2,,βn) 为优阵,其中 β \beta β 组为 α \alpha α 组的重排
  3. (封闭性)若 A A A B B B 为同阶优阵,则 A B AB AB 也为优阵

向量构造优阵

将向量作为镜面阵的法向量,构造镜面阵(优阵+H阵)

α = ( a 1 a 2 ⋮ a n ) ∈ C \alpha=\left( \begin{matrix} a_1\\a_2\\\vdots \\ a_n \end{matrix} \right)\in C α= a1a2an C A = I n − 2 α α H ∣ α ∣ 2 A=I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2} A=Inα22ααH 是一个优阵

  1. A H = A A^H=A AH=A A 2 = I ( A − 1 = A ) A^2=I(A^{-1}=A) A2=I(A1=A)

  2. A A A 为优阵 ( A H A = I ) (A^HA=I) (AHA=I)
    1. A 2 = ( I n − 2 α α H ∣ α ∣ 2 ) ( I n − 2 α α H ∣ α ∣ 2 ) = I n 2 − 4 α α H ∣ α ∣ 2 + 4 ( α α H ) ( α α H ) ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α ( α H α ) α H ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α ( ∣ α ∣ 2 ) α H ∣ α ∣ 4 = I n − 4 α α H ∣ α ∣ 2 + 4 α α H ∣ α ∣ 2 = I n 2. A H A = ( I n − 2 α α H ∣ α ∣ 2 ) H ( I n − 2 α α H ∣ α ∣ 2 ) = ( I n − 2 α α H ∣ α ∣ 2 ) ( I n − 2 α α H ∣ α ∣ 2 ) = A 2 = I ∴ A 是 U 阵 \begin{aligned} 1.A^2&=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})\\ &=I_n^2-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4(\alpha\alpha^H)(\alpha\alpha^H)}{\vert \alpha\vert^4}=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha(\alpha^H\alpha)\alpha^H}{\vert \alpha\vert^4} \\ &=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha(\vert \alpha\vert^2)\alpha^H}{\vert \alpha\vert^4}=I_n-\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}+\frac{4\alpha\alpha^H}{\vert \alpha \vert^2}=I_n\\ 2.A^HA&=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})^H(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})\\ &=(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})(I_n-\frac{2\alpha\alpha^H}{\vert \alpha \vert^2})=A^2=I\\ &\therefore A是U阵 \end{aligned} 1.A22.AHA=(Inα22ααH)(Inα22ααH)=In2α24ααH+α44(ααH)(ααH)=Inα24ααH+α44α(αHα)αH=Inα24ααH+α44α(α2)αH=Inα24ααH+α24ααH=In=(Inα22ααH)H(Inα22ααH)=(Inα22ααH)(Inα22ααH)=A2=IAU

eg
α = ( 1 1 1 ) , 其 U 阵为 I 3 − 2 α α H ∣ α ∣ 2 = ( 1 0 0 0 1 0 0 0 1 ) − 2 3 ( 1 1 1 1 1 1 1 1 1 ) = ( 1 3 − 2 3 − 2 3 − 2 3 1 3 − 2 3 − 2 3 − 2 3 1 3 ) \begin{aligned} \alpha=\left( \begin{matrix} 1\\1\\1 \end{matrix} \right),其U阵为 I_3-\frac{2\alpha\alpha^H}{\vert \alpha\vert^2}&=\left( \begin{matrix} 1&0&0\\0&1&0\\0&0&1\\ \end{matrix} \right)-\frac{2}{3}\left( \begin{matrix} 1&1&1\\1&1&1\\1&1&1\\ \end{matrix} \right)\\ &=\left( \begin{matrix} \frac{1}{3}&-\frac{2}{3}&-\frac{2}{3}\\ -\frac{2}{3}&\frac{1}{3}&-\frac{2}{3}\\ -\frac{2}{3}&-\frac{2}{3}&\frac{1}{3}\\ \end{matrix} \right) \end{aligned} α= 111 ,U阵为I3α22ααH= 100010001 32 111111111 = 313232323132323231

8.3 Hermite阵

定义: A H = A A^H=A AH=A ,则矩阵为 A A A

8.3.1 性质

a. 对角线上元素都是实数

证明:

A = ( a 11 ∗ a 22 ⋱ ∗ a n n ) A=\left( \begin{matrix} a_{11}&\quad&\quad &*\\ \quad&a_{22}&\quad&\quad \\ \quad &\quad&\ddots&\quad\\ *&\quad&\quad&a_{nn} \end{matrix} \right) A= a11a22ann ,而 A H = ( a 11 ‾ ∗ a 22 ‾ ⋱ ∗ a n n ‾ ) A^H=\left( \begin{matrix} \overline{a_{11}}&\quad&\quad &*\\ \quad&\overline{a_{22}}&\quad&\quad \\ \quad &\quad&\ddots&\quad\\ *&\quad&\quad&\overline{a_{nn}} \end{matrix} \right) AH= a11a22ann ,由Hermite性质, A H = A A^H=A AH=A ,则 a 11 = a 11 ‾ , a 22 = a 22 ‾ , . . . , a n n = a n n ‾ a_{11}=\overline{a_{11}},a_{22}=\overline{a_{22}},...,a_{nn}=\overline{a_{nn}} a11=a11,a22=a22,...,ann=ann ,可见 Hermite阵对角线元素为实数

b. 特根

A H = A A^H=A AH=A 是Hermite矩阵,则特征根都是实数, { λ 1 , ⋯   , λ n } ∈ R \{\lambda_1,\cdots,\lambda_n\}\in R {λ1,,λn}R
由特商公式 λ = X H A X ∣ X ∣ 2 ,其中 X ≠ 0 ,为 λ 的特征向量 其中 ∣ X ∣ ≥ 0 ,为实数 . ∴ 若证 λ 为实数,即证 X H A X 为实数 已知 X H A X 为一维数字,则只需证明 ( X H A X ) H = X H A X 即可 , 已知 A = A H 为 H e r m i t e 矩阵, ( X H A X ) H = X H A H X = X H A X ∈ R \begin{aligned} &由特商公式\lambda=\frac{X^HAX}{\vert X \vert^2},其中X\neq 0,为\lambda的特征向量\\ &其中\vert X \vert\ge 0 ,为实数.\\ &\therefore 若证\lambda 为实数,即证 X^HAX为实数\\ &已知X^HAX为一维数字,则只需证明(X^HAX)^H=X^HAX即可,\\ &已知A=A^H为Hermite矩阵,(X^HAX)^H=X^HA^HX=X^HAX\in R \end{aligned} 由特商公式λ=X2XHAX,其中X=0,为λ的特征向量其中X0,为实数.若证λ为实数,即证XHAX为实数已知XHAX为一维数字,则只需证明(XHAX)H=XHAX即可,已知A=AHHermite矩阵,(XHAX)H=XHAHX=XHAXR

c. 特向

A = A H ∈ C n × n A=A^H\in C^{n\times n} A=AHCn×n ,则 A A A n n n 个互相正交的特征向量,即 X 1 ⊥ X 2 ⊥ . . . ⊥ X n X_1\bot X_2\bot...\bot X_n X1X2⊥...⊥Xn
若 A 为 H e r m i t e 阵,则 ∃ U 阵 Q ,使 Q − 1 A Q = Q H A Q = Λ = ( λ 1 ⋱ λ n ) 令 Q = ( X 1 , X 2 , ⋯   , X n ) ,且 X 1 ⊥ X 2 ⊥ . . . ⊥ X n , A Q = Q Λ    ⟺    ( A X 1 A X 2 ⋱ A X n ) = ( λ 1 X 1 λ 2 X 2 ⋱ λ n X n ) 即 X i 为矩阵 A 的 λ i 的特征向量 \begin{aligned} &若A为Hermite阵,则\exist U阵Q,使Q^{-1}AQ=Q^HAQ=\Lambda=\left( \begin{matrix} \lambda_1&&\\ &\ddots&\\ &&\lambda_n \end{matrix} \right)\\ &令Q=(X_1,X_2,\cdots,X_n),且X_1\bot X_2\bot...\bot X_n,\\ &AQ=Q\Lambda\iff \left( \begin{matrix} AX_1&&\\ &AX_2&&\\ &&\ddots&\\ &&&AX_n \end{matrix} \right)=\left( \begin{matrix} \lambda_1X_1&&&\\ &\lambda_2X_2&&\\ &&\ddots&\\ &&&\lambda_nX_n \end{matrix} \right)\\ &即X_i为矩阵A的\lambda_i的特征向量 \end{aligned} AHermite阵,则UQ,使Q1AQ=QHAQ=Λ= λ1λn Q=(X1,X2,,Xn),且X1X2⊥...⊥Xn,AQ=QΛ AX1AX2AXn = λ1X1λ2X2λnXn Xi为矩阵Aλi的特征向量
推论

A A A 为Hermite阵 A H = A A^H=A AH=A ,且 λ 1 ≠ λ 2 \lambda_1 \neq \lambda_2 λ1=λ2 ,则相应的特征向量正交

证明:
由 λ 1 ≠ λ 2 , 且 A X 1 = λ 1 X 1 , A X 2 = λ 2 X 2 , 有 λ 1 ( X 1 , X 2 ) = ( λ 1 X 1 , X 2 ) = ( A X 1 , X 2 ) = X 2 H A X 1 λ 2 ( X 1 , X 2 ) = ( X 1 , λ 2 ‾ X 2 ) = H 阵特征值 ∈ R ( X 1 , λ 2 X 2 ) = ( X 1 , A X 2 ) = ( A X 2 ) H X 1 = = X 2 H A X 1 = λ 1 ( X 1 , X 2 ) ∴ ( λ 1 − λ 2 ) ( X 1 , X 2 ) = 0 , 而 λ 1 ≠ λ 2 ,则 ( X 1 , X 2 ) = 0 \begin{aligned} &由\lambda_1 \neq \lambda_2,且AX_1=\lambda_1 X_1,AX_2=\lambda_2X_2,有\\ &\lambda_1(X_1,X_2)=(\lambda_1X_1,X_2)=(AX_1,X_2)=X_2^HAX_1\\ &\lambda_2(X_1,X_2)=(X_1,\overline{\lambda_2}X_2)\xlongequal{H阵特征值\in R}(X_1,\lambda_2X_2)=(X_1,AX_2)=(AX_2)^HX_1=\\ &\quad\quad =X_2^HAX_1=\lambda_1(X_1,X_2)\\ &\therefore (\lambda_1-\lambda_2)(X_1,X_2)=0,而\lambda_1\neq \lambda_2,则(X_1,X_2)=0 \end{aligned} λ1=λ2,AX1=λ1X1,AX2=λ2X2,λ1(X1,X2)=(λ1X1,X2)=(AX1,X2)=X2HAX1λ2(X1,X2)=(X1,λ2X2)H阵特征值R (X1,λ2X2)=(X1,AX2)=(AX2)HX1==X2HAX1=λ1(X1,X2)(λ1λ2)(X1,X2)=0,λ1=λ2,则(X1,X2)=0

8.3.2 Hermite分解定理(对角阵)

A = A H A=A^H A=AH 是Hermite阵,则存在优阵 Q Q Q ,使 Q − 1 A Q = Q H A Q = Λ = ( λ 1 ⋱ λ n ) Q^{-1}AQ=Q^HAQ=\Lambda=\left( \begin{matrix} \lambda_1&\quad&\quad\\ \quad&\ddots&\quad\\ \quad&\quad&\lambda_n \end{matrix} \right) Q1AQ=QHAQ=Λ= λ1λn A = Q Λ Q − 1 = Q Λ Q H A=Q\Lambda Q^{-1} = Q\Lambda Q^H A=QΛQ1=QΛQH ,且 λ ( A ) ∈ R \lambda(A)\in R λ(A)R
由许尔公式 ⇒ 有 U 阵 Q 使 Q − 1 A Q = Q H A Q = B = ( λ 1 ∗ ⋯ ∗ 0 λ 2 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ) 由 A 是 H e r m i t e 矩阵,则 A H = A , ( Q H A Q ) H = Q H A H Q = Q H A Q = ( λ 1 ‾ 0 ⋯ 0 ∗ λ 2 ‾ ⋯ 0 ⋮ ⋮ ⋱ ⋮ ∗ ∗ ⋯ λ n ‾ ) 由此可见, B 为对角阵,且 λ i 为实数 \begin{aligned} &由许尔公式\Rightarrow 有U阵Q使Q^{-1}AQ=Q^HAQ=B\\ &=\left( \begin{matrix} \lambda_1&*&\cdots&*\\ 0&\lambda_2&\cdots&*\\ \vdots&\vdots &\ddots&\vdots\\ 0&0 &\cdots&\lambda_n\\ \end{matrix} \right)\\ &由A是Hermite矩阵,则A^H=A,(Q^HAQ)^H=Q^HA^HQ=Q^HAQ\\ &=\left( \begin{matrix} \overline{\lambda_1}&0&\cdots&0\\ *&\overline{\lambda_2}&\cdots&0\\ \vdots&\vdots &\ddots&\vdots\\ *&* &\cdots&\overline{\lambda_n}\\ \end{matrix} \right)\\ &由此可见,B为对角阵,且 \lambda_i 为实数 \end{aligned} 由许尔公式UQ使Q1AQ=QHAQ=B= λ100λ20λn AHermite矩阵,则AH=A,(QHAQ)H=QHAHQ=QHAQ= λ10λ200λn 由此可见,B为对角阵,且λi为实数

8.3.3 A H A A^HA AHA 型的 H e r m i t e Hermite Hermite 矩阵

任一矩阵 A n × p A_{n\times p} An×p A H A A^HA AHA A A H AA^H AAH 都是 H e r m i t e Hermite Hermite 矩阵
( A H A ) H = A H A , ( A A H ) H = A \begin{aligned} &(A^HA)^H=A^HA,(AA^H)^H=A \end{aligned} (AHA)H=AHA,(AAH)H=A

a. 向量 X X H XX^H XXH 的迹

X = ( x 1 x 2 ⋮ x n ) , X H = ( x 1 ‾ , x 2 ‾ , ⋯   , x n ‾ ) t r ( X X H ) = t r ( X H X ) = ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ ∣ x n ∣ 2 = ∑ ∣ x j ∣ 2 \begin{aligned} &X=\left( \begin{matrix} x_1\\ x_2\\\vdots \\x_n \end{matrix} \right),X^H=(\overline{x_1},\overline{x_2},\cdots,\overline{x_n})\\ &tr(XX^H)=tr(X^HX)=\mid x_1 \mid^2+\mid x_2 \mid^2+\cdots\mid x_n \mid^2=\sum \mid x_j \mid^2 \end{aligned} X= x1x2xn ,XH=(x1,x2,,xn)tr(XXH)=tr(XHX)=∣x12+x22+xn2=xj2

  • t r ( X Y H ) = t r ( Y H X ) = x 1 y 1 ‾ + ⋯ + x n y n ‾ = ∑ i = 1 n x i y i ‾ tr(XY^H)=tr(Y^HX)=x_1\overline{y_1}+\cdots+x_n\overline{y_n} =\sum\limits_{i=1}\limits^{n}x_i\overline{y_i} tr(XYH)=tr(YHX)=x1y1++xnyn=i=1nxiyi X X X 为列向量

    【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第7张图片

b. 矩阵 A H A A^HA AHA 的迹

A n × p = ( a 11 ⋯ a 1 p ⋮ ⋱ ⋮ a n 1 ⋯ a n p ) ∈ C n × p A_{n\times p}=\left( \begin{matrix} a_{11}&\cdots&a_{1p}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{np} \end{matrix} \right)\in C^{n\times p} An×p= a11an1a1panp Cn×p A p × n H = ( a 11 ‾ ⋯ a n 1 ‾ ⋮ ⋱ ⋮ a 1 p ‾ ⋯ a n p ‾ ) ∈ C p × n A^H_{p\times n}=\left( \begin{matrix} \overline{a_{11}}&\cdots&\overline{a_{n1}}\\ \vdots&\ddots&\vdots\\ \overline{a_{1p}}&\cdots&\overline{a_{np}} \end{matrix} \right)\in C^{p\times n} Ap×nH= a11a1pan1anp Cp×n
A A H = ( a 11 ⋯ a 1 p ⋮ ⋱ ⋮ a n 1 ⋯ a n p ) ( a 11 ‾ ⋯ a n 1 ‾ ⋮ ⋱ ⋮ a 1 p ‾ ⋯ a n p ‾ ) = ( a 11 a 11 ‾ + a 12 a 12 ‾ + ⋯ + a 1 p a 1 p ‾ ∗ a 21 a 21 ‾ + a 22 a 22 ‾ + ⋯ + a 2 p a 2 p ‾ ⋱ ∗ a n 1 a n 1 ‾ + a n 2 a n 2 ‾ + ⋯ + a n p a n p ‾ ) \begin{aligned} &AA^H=\left( \begin{matrix} a_{11}&\cdots&a_{1p}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{np} \end{matrix} \right)\left( \begin{matrix} \overline{a_{11}}&\cdots&\overline{a_{n1}}\\ \vdots&\ddots&\vdots\\ \overline{a_{1p}}&\cdots&\overline{a_{np}} \end{matrix} \right)\\ &=\left( \begin{matrix} a_{11}\overline{a_{11}}+a_{12}\overline{a_{12}}+\cdots+a_{1p}\overline{a_{1p}}&\quad &\quad&\ast\\ \quad&a_{21}\overline{a_{21}}+a_{22}\overline{a_{22}}+\cdots+a_{2p}\overline{a_{2p}}&\quad&\quad\\ \quad &\quad &\ddots&\quad\\ \ast &\quad&\quad&a_{n1}\overline{a_{n1}}+a_{n2}\overline{a_{n2}}+\cdots+a_{np}\overline{a_{np}} \end{matrix} \right) \end{aligned} AAH= a11an1a1panp a11a1pan1anp = a11a11+a12a12++a1pa1pa21a21+a22a22++a2pa2pan1an1+an2an2++anpanp

t r ( A H A ) = t r ( A A H ) = ( ∣ a 11 ∣ 2 + ∣ a 12 ∣ 2 + . . . + ∣ a 1 p ∣ 2 ) + ( ∣ a 21 ∣ 2 + ∣ a 22 ∣ 2 + . . . + ∣ a 2 p ∣ 2 ) + . . . + ( ∣ a n 1 ∣ 2 + ∣ a n 2 ∣ 2 + . . . + ∣ a n p ∣ 2 ) = ∑ i = 1 , j = 1 n ∣ a i j ∣ 2 \begin{aligned} &tr(A^HA)=tr(AA^H)=\\ &(\mid a_{11} \mid^2+\mid a_{12} \mid^2+...+\mid a_{1p} \mid^2)+(\mid a_{21} \mid^2+\mid a_{22} \mid^2+...+\mid a_{2p} \mid^2)+\\ &...+(\mid a_{n1} \mid^2+\mid a_{n2} \mid^2+...+\mid a_{np} \mid^2) =\sum\limits_{i=1,j=1}\limits^{n}\mid a_{ij} \mid^2 \end{aligned} tr(AHA)=tr(AAH)=(a112+a122+...+a1p2)+(a212+a222+...+a2p2)+...+(an12+an22+...+anp2)=i=1,j=1naij2

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第8张图片

推论

t r ( A B H ) = t r ( B H A ) = ∑ a i j b i j ‾ tr(AB^H)=tr(B^HA)=\sum a_{ij}\overline{b_{ij}} tr(ABH)=tr(BHA)=aijbij

【矩阵论】8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵_第9张图片

  • 将 A、B 矩阵按列分块,可验证 t r ( B H A ) tr(B^HA) tr(BHA)
    A = ( α 1 , α 2 ) , B = ( β 1 , β 2 ) , B H = ( β 1 ‾ T β 2 ‾ T ) B H A = ( β 1 ‾ T β 2 ‾ T ) ( α 1 , α 2 ) = ( β 1 ‾ T α 1 β 1 ‾ T α 2 β 2 ‾ T α 1 β 2 ‾ T α 2 ) t r ( B H A ) = β 1 ‾ T α 1 + β 2 ‾ T α 2 = ( a 11 b 11 ‾ + a 21 b 21 ‾ + a 31 b 31 ‾ ) + ( a 12 b 12 ‾ + a 22 b 22 ‾ + a 32 b 32 ‾ ) = ∑ a i j b i j ‾ \begin{aligned} &A=(\alpha_1,\alpha_2),B=(\beta_1,\beta_2),B^H=\left( \begin{matrix} \overline{\beta_1}^T\\ \overline{\beta_2}^T\\ \end{matrix} \right)\\ &B^HA=\left( \begin{matrix} \overline{\beta_1}^T\\ \overline{\beta_2}^T\\ \end{matrix} \right)(\alpha_1,\alpha_2)=\left( \begin{matrix} &\overline{\beta_1}^T\alpha_1\quad &\overline{\beta_1}^T\alpha_2\\ &\overline{\beta_2}^T\alpha_1\quad &\overline{\beta_2}^T\alpha_2 \end{matrix} \right)\\ &tr(B^HA)=\overline{\beta_1}^T\alpha_1+\overline{\beta_2}^T\alpha_2=\\ &\quad (a_{11}\overline{b_{11}}+a_{21}\overline{b_{21}}+a_{31}\overline{b_{31}})+ (a_{12}\overline{b_{12}}+a_{22}\overline{b_{22}}+a_{32}\overline{b_{32}})\\ &=\sum a_{ij}\overline{b_{ij}} \end{aligned} A=(α1,α2),B=(β1,β2),BH=(β1Tβ2T)BHA=(β1Tβ2T)(α1,α2)=(β1Tα1β2Tα1β1Tα2β2Tα2)tr(BHA)=β1Tα1+β2Tα2=(a11b11+a21b21+a31b31)+(a12b12+a22b22+a32b32)=aijbij

  • 将 A、B 矩阵按行分块,可验证 t r ( A B H ) tr(AB^H) tr(ABH)
    A = ( α 1 α 2 α 3 ) , B = ( β 1 β 2 β 3 ) , B H = ( β 1 ‾ T , β 2 ‾ T , β 3 ‾ T ) A B H = ( α 1 α 2 α 3 ) ( β 1 ‾ T , β 2 ‾ T , β 3 ‾ T ) = ( α 1 β 1 ‾ T α 1 β 2 ‾ T α 1 β 3 ‾ T α 2 β 1 ‾ T α 2 β 2 ‾ T α 3 β 3 ‾ T α 3 β 1 ‾ T α 3 β 2 ‾ T α 3 β 3 ‾ T ) t r ( A B H ) = ( a 11 b 11 ‾ + a 12 b 12 ‾ ) + ( a 21 b 21 ‾ + a 22 b 22 ‾ ) + ( a 31 b 31 ‾ + a 32 b 32 ‾ ) = ∑ a i j b i j ‾ \begin{aligned} &A=\left( \begin{matrix} \alpha_1\\ \alpha_2\\ \alpha_3 \end{matrix} \right), B=\left( \begin{matrix} \beta_1\\ \beta_2\\ \beta_3 \end{matrix} \right),B^H=(\overline{\beta_1}^T,\overline{\beta_2}^T,\overline{\beta_3}^T)\\ &AB^H=\left( \begin{matrix} \alpha_1\\ \alpha_2\\ \alpha_3 \end{matrix} \right)(\overline{\beta_1}^T,\overline{\beta_2}^T,\overline{\beta_3}^T)=\left( \begin{matrix} \alpha_1\overline{\beta_1}^T\quad&\alpha_1\overline{\beta_2}^T\quad&\alpha_1\overline{\beta_3}^T\\ \alpha_2\overline{\beta_1}^T\quad&\alpha_2\overline{\beta_2}^T\quad&\alpha_3\overline{\beta_3}^T\\ \alpha_3\overline{\beta_1}^T\quad&\alpha_3\overline{\beta_2}^T\quad&\alpha_3\overline{\beta_3}^T \end{matrix} \right)\\ &tr(AB^H)=(a_{11}\overline{b_{11}}+a_{12}\overline{b_{12}})+(a_{21}\overline{b_{21}}+a_{22}\overline{b_{22}})+(a_{31}\overline{b_{31}}+a_{32}\overline{b_{32}})\\ &\quad\quad\quad\quad = \sum a_{ij}\overline{b_{ij}} \end{aligned} A= α1α2α3 ,B= β1β2β3 BH=(β1T,β2T,β3T)ABH= α1α2α3 (β1T,β2T,β3T)= α1β1T

你可能感兴趣的:(数学,#,矩阵论,矩阵,线性代数)