相机标定-kinectv1外参数标定(没有高度,pnp)

1、相机镜头表面距离桌面1m,输入的图像没有内参文件,内参和畸变采用freenect包默认参数,棋盘格19×14,每一个4厘米,实际坐标为,左上角(0,0)点,水平向右为x正方向,垂直向下为y轴负方向
相机标定-kinectv1外参数标定(没有高度,pnp)_第1张图片
2、四个角点分别为

pixel_point= np.array([
    [155.08159, 57.66385],
    [505.4953, 55.266895],
    [522.11066, 313.81503],
    [135.968, 311.828]
                            ])

起始点为左上角,顺时针。
相机标定-kinectv1外参数标定(没有高度,pnp)_第2张图片
3、实际对应坐标

world_point= np.array([
                            [0.0, 0.0, 0.0],
                             [720.0, 0.0, 0.0],
                             [720.0, -520.0, 0.0],
                            [0.0, -520.0, 0.0]
                            ])

4、验证结果,实际坐标

[[  -4.05488531  719.76483854  720.5608823    -4.77362602]
 [   8.235876      5.34935788 -521.29230982 -523.03245145]
 [   1.            1.            1.            1.        ]]

5、一些参数
(1)内参

[[561.19068618   0.         315.72071183]
 [  0.         558.64303535 240.36261192]
 [  0.           0.           1.        ]]

(2)畸变

[ 0.06844978 -0.05714101 -0.00097167 -0.00637341  0.        ]

(4)r1[0]

(array([[ 0.99921849,  0.01026611, -0.03817089],
       [ 0.00246621, -0.97999406, -0.19901145],
       [-0.03945032,  0.19876179, -0.9792535 ]])

(5) t

[[-332.09409591]
 [-375.87254215]
 [1172.22871055]]

(6) R1R2

[[ 9.99218489e-01  1.02661114e-02 -3.32094096e+02]
 [ 2.46621039e-03 -9.79994061e-01 -3.75872542e+02]
 [-3.94503238e-02  1.98761786e-01  1.17222871e+03]]

(3)还原的相机坐标

print(np.dot(np.linalg.inv(K),pixel_yanzheng))
[[-0.28624695  0.33816418  0.36777151 -0.32030594]
 [-0.32704026 -0.33133093  0.13148364  0.12792675]
 [ 1.          1.          1.          1.        ]]

继续乘外参数的逆矩阵

a=np.dot(np.linalg.inv(K),pixel_yanzheng)
pixel_to_world=np.dot(np.linalg.inv(R1R2T),a)

结果

[[  -4.05488531  719.76483854  720.5608823    -4.77362602]
 [   8.235876      5.34935788 -521.29230982 -523.03245145]
 [   1.            1.            1.            1.        ]]

求得的四个点的深度值

print(1.0/pixel_to_world[2])
[1174.02565451 1144.8970025  1040.18936002 1068.45816761]

你可能感兴趣的:(相机标定,pnp,计算机视觉,人工智能)