调整cnn网络结构需要增加或者减少layer的层数,并且更改layer的类型,比如在现有的conv层和pooling层后面继续增加conv层和pooling层,目的是为了提取更高层次的特征。
当然你也可以增加全连接层数目(那么做训练会变慢--、),修改激活函数和填充器类型。
建议你还是使用caffe中自带的cifar10_quick和caffenet进行训练,然后针对你的数据修改相应的网络参数和solver参数。
谷歌人工智能写作项目:小发猫
rfid。
输入层:输出特征矩阵卷积层:进行卷积运算池化层:进行pooling缩小维度中间激活层:可有可无,一般为ReLU类的计算简单的激活函数对特征值修正这里卷积层、池化层、中间激活层可以重复全连接层:将特征矩阵集合向量化最后激活层:将向量化特征转换成标签。
用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客。
#coding:utf-8''' GPU run command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python CPU run command: python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。
现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。
'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024) # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。
1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。
4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。
4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。
verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator( featurewise_center=True, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=True, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180) width_shift_range=0.2, # randomly shift images horizontally (fraction of total width) height_shift_range=0.2, # randomly shift images vertically (fraction of total height) horizontal_flip=True, # randomly flip images vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch): print('-'*40) print('Epoch', e) print('-'*40) print("Training...") # batch train with realtime data augmentation progbar = generic_utils.Progbar(data.shape[0]) for X_batch, Y_batch in (data, label): loss,accuracy = model.train(X_batch, Y_batch,accuracy=True) (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。
局部连接,权值共享,池化操作,多层次结构。
1、局部连接使网络可以提取数据的局部特征;2、权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本)中进行卷积;3、池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采用了softmax形式的输出。
实验输入仍然采用MNIST图像使用10个featuremap时,卷积和pooling的结果分别如下所示。
部分源码如下:[python] viewplain copy#coding=utf-8'''''Created on 2014年11月30日@author: Wangliaofan'''import numpyimport structimport matplotlib.pyplot as pltimport mathimport randomimport copy#testfrom BasicMultilayerNeuralNetwork import BMNN2def sigmoid(inX):if (-inX)== 0.0:return 999999999.999999999return 1.0/((-inX))def difsigmoid(inX):return sigmoid(inX)*(1.0-sigmoid(inX))def tangenth(inX):return (1.0*(inX)-1.0*(-inX))/(1.0*(inX)+1.0*(-inX))def cnn_conv(in_image, filter_map,B,type_func='sigmoid'):#in_image[num,feature map,row,col]=>in_image[Irow,Icol]#features map[k filter,row,col]#type_func['sigmoid','tangenth']#out_feature[k filter,Irow-row+1,Icol-col+1]shape_image=numpy.shape(in_image)#[row,col]#print "shape_image",shape_imageshape_filter=numpy.shape(filter_map)#[k filter,row,col]if shape_filter[1]>shape_image[0] or shape_filter[2]>shape_image[1]:raise Exceptionshape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)out_feature=numpy.zeros(shape_out)k,m,n=numpy.shape(out_feature)for k_idx in range(0,k):#rotate 180 to calculate convc_filter=numpy.rot90(filter_map[k_idx,:,:], 2)for r_idx in range(0,m):for c_idx in range(0,n):#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)(conv_temp)if type_func=='sigmoid':out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])elif type_func=='tangenth':out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])else:raise Exceptionreturn out_featuredef cnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):k,row,col=numpy.shape(out_feature)max_index_Matirx=numpy.zeros((k,row,col))out_row=int(numpy.floor(row/pooling_size))out_col=int(numpy.floor(col/pooling_size))out_pooling=numpy.zeros((k,out_row,out_col))for k_idx in range(0,k):for r_idx in range(0,out_row):for c_idx in range(0,out_col):temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]out_pooling[k_idx,r_idx,c_idx](temp_matrix)max_index=numpy.argmax(temp_matrix)#print max_index#print max_index/pooling_size,max_index%pooling_sizemax_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1return out_pooling,max_index_Matirxdef poolwithfunc(in_pooling,W,B,type_func='sigmoid'):k,row,col=numpy.shape(in_pooling)out_pooling=numpy.zeros((k,row,col))for k_idx in range(0,k):for r_idx in range(0,row):for c_idx in range(0,col):out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])return out_pooling#out_feature is the out put of convdef backErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):k1,row,col=numpy.shape(out_feature)error_conv=numpy.zeros((k1,row,col))k2,theta_row,theta_col=numpy.shape(theta)if k1!=k2:raise Exceptionfor idx_k in range(0,k1):for idx_row in range( 0, row):for idx_col in range( 0, col):error_conv[idx_k,idx_row,idx_col]=\max_index_Matirx[idx_k,idx_row,idx_col]*\float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*\difsigmoid(out_feature[idx_k,idx_row,idx_col])return error_convdef backErrorfromConvToInput(theta,inputImage):k1,row,col=numpy.shape(theta)#print "theta",k1,row,coli_row,i_col=numpy.shape(inputImage)if row>i_row or col> i_col:raise Exceptionfilter_row=i_row-row+1filter_col=i_col-col+1detaW=numpy.zeros((k1,filter_row,filter_col))#the same with conv valid in matlabfor k_idx in range(0,k1):for idx_row in range(0,filter_row):for idx_col in range(0,filter_col):subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]#print "subInputMatrix",numpy.shape(subInputMatrix)#rotate theta 180#print numpy.shape(theta)theta_rotate=numpy.rot90(theta[k_idx,:,:], 2)#print "theta_rotate",theta_rotate(subInputMatrix,theta_rotate)detaW[k_idx,idx_row,idx_col](dotMatrix)detaB=numpy.zeros((k1,1))for k_idx in range(0,k1):detaB[k_idx](theta[k_idx,:,:])return detaW,detaBdef loadMNISTimage(absFilePathandName,datanum=60000):images=open(absFilePathandName,'rb')()index=0magic, numImages , numRows , numColumns = struct.unpack_from('>IIII' , buf , index)print magic, numImages , numRows , numColumnsindex += struct.calcsize('>IIII')if magic != 2051:raise Exceptiondatasize=int(784*datanum)datablock=">"+str(datasize)+"B"#nextmatrix=struct.unpack_from('>47040000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)/255.0#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)return nextmatrix, numImagesdef loadMNISTlabels(absFilePathandName,datanum=60000):labels=open(absFilePathandName,'rb')()index=0magic, numLabels = struct.unpack_from('>II' , buf , index)print magic, numLabelsindex += struct.calcsize('>II')if magic != 2049:raise Exceptiondatablock=">"+str(datanum)+"B"#nextmatrix=struct.unpack_from('>60000B' ,buf, index)nextmatrix=struct.unpack_from(datablock ,buf, index)nextmatrix=numpy.array(nextmatrix)return nextmatrix, numLabelsdef simpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):decayRate=0.01MNISTimage,num1=loadMNISTimage("F:\Machine Learning\UFLDL\data\common\\train-images-idx3-ubyte",imageNum)print num1row,col=numpy.shape(MNISTimage[0,0,:,:])out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)MLP.setTrainDataNum(imageNum)MLP.loadtrainlabel("F:\Machine Learning\UFLDL\data\common\\train-labels-idx1-ubyte")MLP.initialweights()#MLP.printWeightMatrix()rng = numpy.random.RandomState(23455)W_shp = (numofFilter, filter_size, filter_size)W_bound = (numofFilter * filter_size * filter_size)W_k=rng.uniform(low=-1.0 / W_bound,high=1.0 / W_bound,size=W_shp)B_shp = (numofFilter,)B= numpy.asarray(rng.uniform(low=-.5, high=.5, size=B_shp))cIter=0while cIter。
卷积神经网络用全连接层的参数确定:卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。
它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。
输入层卷积神经网络的输入层可以处理多维数据,常见地,一维卷积神经网络的输入层接收一维或二维数组,其中一维数组通常为时间或频谱采样;二维数组可能包含多个通道;二维卷积神经网络的输入层接收二维或三维数组;三维卷积神经网络的输入层接收四维数组。
由于卷积神经网络在计算机视觉领域应用较广,因此许多研究在介绍其结构时预先假设了三维输入数据,即平面上的二维像素点和RGB通道。