【从官方案例学框架Tensorflow/Keras】微型GPT的文本生成

【从官方案例学框架Keras】微型GPT的文本生成

Keras官方案例链接
Tensorflow官方案例链接
Paddle官方案例链接
Pytorch官方案例链接

注:本系列仅帮助大家快速理解、学习并能独立使用相关框架进行深度学习的研究,理论部分还请自行学习补充,每个框架的官方经典案例写的都非常好,很值得进行学习使用。可以说在完全理解官方经典案例后加以修改便可以解决大多数常见的相关任务。

摘要:本例将演示使用GPT实现自回归的语言模型。该模型由带有causal masking的transformer块组成。我们将使用IMDB文本分类数据集训练语言模型并根据给定提示生成新的电影评论。当你想要切换到你的数据集时,请确保它有至少1M个词

1 Setup

导入所需的库

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import numpy as np
import os
import re
import string
import random

2 Self-attention with causal masking

【从官方案例学框架Tensorflow/Keras】微型GPT的文本生成_第1张图片
GPT简单而言,就是上图Transformer的Decoder部分,即上图右侧

想通常一样使用self-attention,但是通过屏蔽后文的causal masking,防止从后文的数据中得到信息causal_attention_mask实现了这一想法,下述代码除了这一种特殊的MASK操作外与Self-attention并无差别

通俗而言,就是BERT这种MLM掩码语言模型,是用过a[Mask]c预测abc,在[Mask]时是知道后文的c,是会和后文的c做self-attention的,而causal masking将使得当前的词是attend不到后文的词的

class MultiHeadSelfAttention(layers.Layer):
    def __init__(self, embed_dim, num_heads=8):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        if embed_dim % num_heads != 0:
            raise ValueError(
                f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"
            )
        self.projection_dim = embed_dim // num_heads
        self.query_dense = layers.Dense(embed_dim)
        self.key_dense = layers.Dense(embed_dim)
        self.value_dense = layers.Dense(embed_dim)
        self.combine_heads = layers.Dense(embed_dim)

    @staticmethod
    def causal_attention_mask(n_dest, n_src, dtype):
        """
        1's in the lower triangle, counting from the lower right corner.
        """
        i = tf.range(n_dest)[:, None]
        j = tf.range(n_src)
        m = i >= j - n_src + n_dest
        return tf.cast(m, dtype)

    def attention(self, query, key, value):
        score = tf.matmul(query, key, transpose_b=True)
        dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
        scaled_score = score / tf.math.sqrt(dim_key)

        # prevent information flow from future tokens
        shape = tf.shape(scaled_score)
        dim_dest, dim_src = shape[2], shape[3]
        attention_mask = self.causal_attention_mask(
            dim_dest, dim_src, scaled_score.dtype
        )
        attention_mask = tf.reshape(attention_mask, [1, 1, dim_dest, dim_src])
        scaled_score = scaled_score * attention_mask - 1e4 * (1 - attention_mask)

        weights = tf.nn.softmax(scaled_score, axis=-1)
        output = tf.matmul(weights, value)
        return output, weights

    def separate_heads(self, x, batch_size):
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def call(self, inputs):
        # x.shape = [batch_size, seq_len, embedding_dim]
        batch_size = tf.shape(inputs)[0]
        query = self.query_dense(inputs)  # (batch_size, seq_len, embed_dim)
        key = self.key_dense(inputs)  # (batch_size, seq_len, embed_dim)
        value = self.value_dense(inputs)  # (batch_size, seq_len, embed_dim)
        query = self.separate_heads(
            query, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        key = self.separate_heads(
            key, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        value = self.separate_heads(
            value, batch_size
        )  # (batch_size, num_heads, seq_len, projection_dim)
        attention, weights = self.attention(query, key, value)
        attention = tf.transpose(
            attention, perm=[0, 2, 1, 3]
        )  # (batch_size, seq_len, num_heads, projection_dim)
        concat_attention = tf.reshape(
            attention, (batch_size, -1, self.embed_dim)
        )  # (batch_size, seq_len, embed_dim)
        output = self.combine_heads(
            concat_attention
        )  # (batch_size, seq_len, embed_dim)
        return output

3 Implement a Transformer block as a layer

Transformer中的Encoder部分

Multi-Head Attention + Dropout + FFN + Dropout + Add + LayerNormalization

class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super(TransformerBlock, self).__init__()
        self.att = MultiHeadSelfAttention(embed_dim, num_heads)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs):
        attention_output = self.att(inputs)
        attention_output = self.dropout1(attention_output)
        out1 = self.layernorm1(inputs + attention_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output)
        return self.layernorm2(out1 + ffn_output)

4 Implement embedding layer

词嵌入层,实现两种embedding,一种是token的embedding,另一种是token index索引的embedding代表位置向量

class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super(TokenAndPositionEmbedding, self).__init__()
        self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
        self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

    def call(self, x):
        maxlen = tf.shape(x)[-1]
        positions = tf.range(start=0, limit=maxlen, delta=1)
        positions = self.pos_emb(positions)
        x = self.token_emb(x)
        return x + positions

5 Implement miniature GPT model

下述代码与BERT无区别,本例中的GPT模型不过是在MASK上有causal masking处理而已

实现微型GPT模型

vocab_size = 20000  # Only consider the top 20k words
maxlen = 100  # Max sequence size
embed_dim = 256  # Embedding size for each token
num_heads = 2  # Number of attention heads
feed_forward_dim = 256  # Hidden layer size in feed forward network inside transformer


def create_model():
    inputs = layers.Input(shape=(maxlen,), dtype=tf.int32)
    embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
    x = embedding_layer(inputs)
    transformer_block = TransformerBlock(embed_dim, num_heads, feed_forward_dim)
    x = transformer_block(x)
    outputs = layers.Dense(vocab_size)(x)
    model = keras.Model(inputs=inputs, outputs=[outputs, x])
    loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    model.compile(
        "adam", loss=[loss_fn, None],
    )  # No loss and optimization based on word embeddings from transformer block
    return model

6 Prepare data for word level language modelling

下载IMDB数据集

!curl -O https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz

下面代码中值得注意的是
prepare_lm_inputs_labels:将训练数据设置为
原文本:今天是个好天气
x:今天是个好天
y:天是个好天气

batch_size = 32

# The dataset contains each review in a separate text file
# The text files are present in four different folders
# Create a list all files
filenames = []
directories = [
    "./input/aclImdb/train/pos/",
    "./input/aclImdb/train/neg",
    "./input/aclImdb/test/pos",
    "./input/aclImdb/test/neg",
]
for dir in directories:
    for f in os.listdir(dir):
        filenames.append(os.path.join(dir, f))

print(f"{len(filenames)} files")

# 从txt文件加载数据集
# Create dataset from text files
random.shuffle(filenames)
text_ds = tf.data.TextLineDataset(filenames)
text_ds = text_ds.shuffle(buffer_size=256)
text_ds = text_ds.batch(batch_size)

# 自定义预处理函数,文本清洗
def custom_standardization(input_string):
    """ Remove html line-break tags and handle punctuation """
    lowercased = tf.strings.lower(input_string)
    stripped_html = tf.strings.regex_replace(lowercased, "
"
, " ") return tf.strings.regex_replace(stripped_html, f"([{string.punctuation}])", r" \1") # 文本向量化 # Create vectcorization layer and adapt it to the text vectorize_layer = TextVectorization( standardize=custom_standardization, max_tokens=vocab_size - 1, output_mode="int", output_sequence_length=maxlen + 1, ) vectorize_layer.adapt(text_ds) vocab = vectorize_layer.get_vocabulary() # To get words back from token indices def prepare_lm_inputs_labels(text): """ Shift word sequences by 1 position so that the target for position (i) is word at position (i+1). The model will use all words up till position (i) to predict the next word. """ text = tf.expand_dims(text, -1) tokenized_sentences = vectorize_layer(text) x = tokenized_sentences[:, :-1] y = tokenized_sentences[:, 1:] return x, y text_ds = text_ds.map(prepare_lm_inputs_labels) text_ds = text_ds.prefetch(tf.data.experimental.AUTOTUNE)

7 Callback for generating text

设置回调函数,进行文本生成

class TextGenerator(keras.callbacks.Callback):
    """Callback to generate text from trained model.
    1. Feed some starting prompt to the model
    2. Predict probabilities for next token
    3. Sample next token and add it to the next input

    # Arguments
        max_tokens: Integer, the number of tokens to be generated after prompt.
        start_tokens: List of integers, the token indices for the starting prompt.
        index_to_word: List of strings, obtained from TextVectorization layer.
        top_k: Integer, sample from the `top_k` token predictions.
        print_every: Integer, print after this many epochs.
    """

    def __init__(
        self, max_tokens, start_tokens, index_to_word, top_k=10, print_every=1
    ):
        self.max_tokens = max_tokens
        self.start_tokens = start_tokens
        self.index_to_word = index_to_word
        self.print_every = print_every
        self.k = top_k

    def sample_from(self, logits):
        logits, indices = tf.math.top_k(logits, k=self.k, sorted=True)
        indices = np.asarray(indices).astype("int32")
        preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
        preds = np.asarray(preds).astype("float32")
        return np.random.choice(indices, p=preds)

    def detokenize(self, number):
        return self.index_to_word[number]

    def on_epoch_end(self, epoch, logs=None):
        start_tokens = [_ for _ in self.start_tokens]
        if (epoch + 1) % self.print_every != 0:
            return
        num_tokens_generated = 0
        tokens_generated = []
        while num_tokens_generated <= self.max_tokens:
            pad_len = maxlen - len(start_tokens)
            sample_index = len(start_tokens) - 1
            if pad_len < 0:
                x = start_tokens[:maxlen]
                sample_index = maxlen - 1
            elif pad_len > 0:
                x = start_tokens + [0] * pad_len
            else:
                x = start_tokens
            x = np.array([x])
            y, _ = self.model.predict(x)
            sample_token = self.sample_from(y[0][sample_index])
            tokens_generated.append(sample_token)
            start_tokens.append(sample_token)
            num_tokens_generated = len(tokens_generated)
        txt = " ".join(
            [self.detokenize(_) for _ in self.start_tokens + tokens_generated]
        )
        print(f"generated text:\n{txt}\n")


# Tokenize starting prompt
word_to_index = {}
for index, word in enumerate(vocab):
    word_to_index[word] = index

start_prompt = "this movie is"
start_tokens = [word_to_index.get(_, 1) for _ in start_prompt.split()]
num_tokens_generated = 40
text_gen_callback = TextGenerator(num_tokens_generated, start_tokens, vocab)

8 Train

model = create_model()

model.fit(text_ds, verbose=2, epochs=30, callbacks=[text_gen_callback])

你可能感兴趣的:(深度学习框架向,自然语言处理,深度学习,tensorflow,神经网络)