- 人工智能之数学基础:线性空间
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习线性代数线性空间神经网络
本文重点本文我们将讲解线性空间的知识,它不仅是数学中非常重要的知识点,它在机器学习和深度学习中的价值也是非常重要的,在机器学习和深度学习中是可以通过线性空间来进行解释的。线性空间的直观理解线性空间可以看作是一个多维的“宇宙”,其中的“点”由向量表示,而“运动”则通过向量的加法和数乘来实现。这个宇宙中的每一个向量都可以看作是从原点出发到该点的一条有向线段,而线性空间的维度则决定了这个宇宙的大小和复杂
- 动手学深度学习V2.0(Pytorch)——25. 使用块的网络 VGG
吨吨不打野
动手学深度学习pytorch深度学习pytorch网络
文章目录P1讲解1.1基本介绍1.2总结P2代码实现2.1报错解决2.2windows下专用/共享GPU内存P3Q&AP4.其他4.1ImageNetClassificationLeaderboard4.2VGG其它讲解P1讲解1.1基本介绍视频地址:https://www.bilibili.com/video/BV1Ao4y117Pd教材文档:https://zh-v2.d2l.ai/chapt
- AI驱动的知识发现:程序员的新机遇
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI驱动的知识发现:程序员的新机遇关键词:知识发现,AI驱动,数据挖掘,数据分析,算法优化,数据可视化,机器学习1.背景介绍1.1问题由来在当今信息化时代,数据量呈爆炸性增长,各行各业都面临着海量数据挖掘和知识发现的巨大挑战。传统的统计分析方法已难以满足需求,而人工智能(AI)技术的兴起为这一问题提供了新的解决方案。AI驱动的知识发现,即利用机器学习、深度学习等技术手段,从海量数据中自动提取有用信
- 机器学习入门-读书摘要
不像程序员的程序媛
机器学习人工智能
先看了《深度学习入门:基于python的理论和实践》这本电子书,早上因为入迷还坐过站了。。因为里面的反向传播和链式法则特别难懂,又网上搜了相关内容进行进一步理解,参考的以下文章(个人认为都讲的都非常好):https://zhuanlan.zhihu.com/p/65472471https://zhuanlan.zhihu.com/p/635438713https://zhuanlan.zhihu.
- python模块triton安装教程
2401_85863780
1024程序员节tritonwhl
Triton是一个用于高性能计算的开源库,特别适用于深度学习和科学计算。通过预编译的whl文件安装Triton可以简化安装过程,尤其是在编译时可能会遇到依赖问题的情况下。以下是详细的安装步骤:安装前准备:Python环境:确保已经安装了Python,并且Python版本与whl文件兼容。pip:确保已经安装了pip,这是Python的包管理器,用来安装外部库。下载whl文件:从可靠的来源下载适用于
- 【机器学习】逻辑回归(LogisticRegression)原理与实战
GentleCP
机器学习(深度学习)逻辑回归logisticregression原理与实战机器学习
文章目录前言一、什么是逻辑回归1.1逻辑回归基础概念1.2逻辑回归核心概念二、逻辑回归Demo2.1数据准备2.2创建逻辑回归分类器2.3分类器预测三、逻辑回归实战3.1数据准备3.2数据划分与模型创建3.3预测数据评估模型四、参数选择五、总结六、参考资料本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录前言本文主要通过文字和代码样例讲述逻辑回归的原理(包含逻辑回归的基础概念与推导)和实
- 《深度Q网络优化:突破高维连续状态空间的束缚》
人工智能深度学习
在人工智能的发展历程中,深度Q网络(DQN)作为强化学习与深度学习融合的关键成果,为解决复杂决策问题开辟了新路径。但当面对高维连续状态空间时,DQN会出现训练不稳定、收敛速度慢等问题,严重限制了其应用范围。如何优化DQN以适应高维连续状态空间,成为当下研究的热点。深度Q网络基础回顾深度Q网络结合了深度学习强大的特征提取能力与Q学习的决策优化思想。在传统强化学习中,Q学习通过Q表记录每个状态-动作对
- 智享AI直播三代系统,开启「机器人比人更会带货」时代!
缘分开始t621238
人工智能机器人
智享AI直播三代系统,开启「机器人比人更会带货」时代!在当今数字化浪潮汹涌的时代,直播行业作为电商领域的重要驱动力,正经历着前所未有的变革。近日,智享AI直播三代系统的横空出世,宛如一颗重磅炸弹,在直播行业掀起了惊涛骇浪,正式开启了「机器人比人更会带货」的全新时代。一、技术革新,颠覆传统直播模式智享AI直播三代系统的诞生,标志着直播行业进入了智能化的新纪元。它融合了先进的人工智能技术,包括深度学习
- 自学黑客(网络安全),一般人我劝你还是算了吧
网安周星星
web安全安全windows网络网络安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包文章讲述了自学网络安全时常见的误区,如先学编程、过度追求深度学习以及收集过多资料,并提供了前期学习的硬件、软件选择建议,强调了基础编程知识和英文能力的重要性。文中给出了详细的学习路线,包括基础操作入门、实战操作以及参加CTF和HVV等竞赛来提升技能,并推荐了一系列相关书籍和学习资源。一、自学网络安全学习的误区和陷阱1.不要试图先成为一
- DQN的原理和代码实现
SmallerFL
NLP&机器学习DQN强化学习深度学习
文章目录1.概述2.DQN的训练步骤2.1初始化2.2训练循环2.3终止条件2.4评估3.代码示例1.概述深度Q网络(DeepQ-Network,DQN)是强化学习中的一种重要算法,由GoogleDeepMind于2013年提出。DQN结合了Q学习和深度学习,通过使用神经网络来近似Q值函数,解决了传统Q学习在高维状态空间中的问题。2.DQN的训练步骤2.1初始化环境:定义环境(例如,Atari游戏
- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 【python语言应用】最新全流程Python编程、机器学习与深度学习实践技术应用(帮助你快速了解和入门 Python)
赵钰老师
python机器学习深度学习python机器学习深度学习数据分析人工智能
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。理解和掌握深度学习的基础知识,深入了解其与经典机器学习算法的区别与联系,并系统掌握包括迁移学习、循环神经网络(RNN)、长短时记忆网络(L
- 【Python深入浅出㊸】解锁Python3中的TensorFlow:开启深度学习之旅
奔跑吧邓邓子
Python深入浅出python深度学习tensorflow
目录一、TensorFlow简介1.1定义与背景1.2特点二、Python3与TensorFlow的关系2.1版本对应2.2为何选择Python3三、安装TensorFlow3.1安装步骤3.2验证安装四、TensorFlow基本概念与使用方法4.1计算图(Graph)4.2会话(Session)4.3张量(Tensor)4.4变量(Variable)4.5占位符(Placeholder)五、Te
- 【Java】已解决:java.util.concurrent.ExecutionException
屿小夏
java开发语言android
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- c++加载TensorRT调用深度学习模型方法
feibaoqq
深度学习深度学习YOLO
使用TensorRT来调用训练好的模型并输出结果是一个高效的推理过程,特别是在需要低延迟和高吞吐量的应用场景中。以下是一个基本的步骤指南,展示了如何在C++中使用TensorRT进行推理。步骤1:准备环境安装TensorRT:确保你已经安装了NVIDIATensorRT库。准备模型:确保你的训练好的模型已经转换为TensorRT支持的格式,通常是一个.engine文件。你可以使用onnx-tens
- 点云从入门到精通技术详解100篇-基于 CBCT 与口内扫描数据的牙齿点云配准
格图素书
深度学习计算机视觉数学建模人工智能
目录前言国内外研究现状传统牙齿配准点云配准2牙齿数据的深度学习点云配准基础2.1牙齿数据获取方法2.1.1口腔印模2.1.2辐射成像2.1.3口内扫描2.2深度学习网络2.2.1全连接神经网络2.2.2卷积神经网络2.2.3孪生神经网络2.3点云数据配准基础2.3.1点云数据格式2.3.2点云旋转表达2.3.3传统点云配准方法3基于PCRNet的PCR-SA牙齿点云配准3.1CBCT-IOS牙齿配
- Python深度学习代做目标检测NLP计算机视觉强化学习
matlabgoodboy
计算机视觉python深度学习
了解您的需求,您似乎在寻找关于Python深度学习领域的代做服务,特别是在目标检测、自然语言处理(NLP)、计算机视觉以及强化学习方面。以下是一些关于这些领域的概述以及寻找相关服务的建议。1.Python深度学习代做概述目标检测:目标检测是计算机视觉中的一个重要任务,旨在识别图像或视频中的特定对象,并确定它们的位置。Python中的深度学习框架(如TensorFlow、PyTorch)和计算机视觉
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- 【深度学习】计算机视觉(CV)-目标检测-SSD(Single Shot MultiBox Detector)—— 单次检测多框检测器
IT古董
深度学习人工智能计算机视觉深度学习目标检测
SSD(SingleShotMultiBoxDetector)——单次检测多框检测器1️⃣什么是SSD?SSD(SingleShotMultiBoxDetector)是一种用于目标检测(ObjectDetection)的深度学习模型,由WeiLiu等人在2016年提出。它采用单阶段(SingleStage)方法,能够直接从图像中检测多个对象,并输出类别和边界框,比传统的两阶段方法(如FasterR
- 【深度学习】YOLO-World: Real-Time Open-Vocabulary Object Detection,目标检测
XD742971636
深度学习机器学习深度学习YOLO目标检测
介绍一个酷炫的目标检测方式:论文:https://arxiv.org/abs/2401.17270代码:https://github.com/AILab-CVC/YOLO-World文章目录摘要Introduction第2章相关工作2.1传统目标检测2.2开放词汇目标检测第3章方法3.1预训练公式:区域-文本对3.2模型架构3.3可重参数化的视觉-语言路径聚合网络(RepVL-PAN)3.4预训练
- PyTorch入门实战:从零搭建你的第一个神经网络
不打滑的西瓜皮
机器学习深度学习人工智能神经网络pythonpytorchpycharm
目录一、PyTorch简介:为什么选择它?二、环境搭建:5分钟快速安装三、核心概念:张量与自动求导1.张量(Tensor):深度学习的数据基石2.自动求导(Autograd):神经网络训练的核心四、实战:手写数字识别(MNIST)1.数据集加载与预处理2.构建卷积神经网络(CNN)3.训练与评估五、下一步学习建议一、PyTorch简介:为什么选择它?PyTorch是当前最热门的深度学习框架之一,由
- 超火的Deepseek的MOE架构是什么?
魔王阿卡纳兹
大模型知识札记架构DeepSeekMoE大模型
DeepSeek的MOE(MixtureofExperts,混合专家)架构是一种基于专家模型(MixtureofExperts)的深度学习框架,旨在通过动态选择和激活部分专家模块来提高计算效率和模型性能。以下是对其核心特点和工作原理的详细介绍:1.核心概念与架构MOE架构的基本思想是将模型划分为多个“专家”模块,每个专家专注于处理特定类型的任务或数据特征。在推理时,通过门控机制(GatingMec
- 使用神经架构搜索(Neural Architecture Search, NAS)自动化设计高效深度学习模型的技术详解
瑕疵
热点资讯
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高效深度学习模型的技术详解使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高效深度学习模型的技术详解使用神经架构搜索(NeuralArchitectureSearch,NAS)自动化设计高
- 目标检测代码示例(基于Python和OpenCV)
matlab_python22
计算机视觉
引言目标检测是计算机视觉领域中的一个核心任务,其目标是在图像或视频中定位和识别特定对象。随着技术的发展,目标检测算法不断演进,从传统的基于手工特征的方法到现代的深度学习方法,再到基于Transformer的架构,目标检测技术已经取得了显著的进步。本文将总结和对比几种主要的目标检测算法,探讨它们的优势、劣势和适用场景。1.目标检测算法分类1.1单阶段检测(One-Stage)与双阶段检测(Two-S
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 基于YOLOv5深度学习的木材表面缺陷检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
随着工业自动化的发展,木材加工行业对产品质量的要求日益提高。木材表面缺陷的检测是确保产品质量的重要环节。传统的人工检测方式不仅费时费力,而且容易受到人为因素的影响。基于深度学习的目标检测技术,尤其是YOLOv5,凭借其优越的实时性和准确性,成为木材表面缺陷检测的有效工具。本博客将详细介绍如何构建一个基于YOLOv5的木材表面缺陷检测系统,包括数据集准备、模型训练、UI界面开发及完整代码实现。目录目
- 动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)
lusterku
动手学深度学习深度学习笔记线性回归
动手学深度学习笔记|3.2线性回归的从零开始实现(附课后习题答案)线性回归的从零开始实现生成数据集读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练练习1.如果我们将权重初始化为零,会发生什么。算法仍然有效吗?2.计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?3.为什么在`squared_loss`函数中需要使用`reshape`函数?4.尝试使用不同的学习率,观察损失函数值下
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 超级实用!一个基于python的简化版深度学习框架,包括深度学习神经网络的设计和深度学习模型的设计,适用于中小型项目的开发和实现
大懒猫软件
深度学习python神经网络numpypytorch人工智能
一、运用Python技术开发深度学习框架需要具备的基础知识总结开发一个基于Python的深度学习框架是一个复杂的任务,需要具备多方面的基础知识。以下是一些关键领域的总结,帮助你更好地准备和理解开发深度学习框架所需的知识。1.Python编程基础语法和数据结构:掌握Python的基本语法、数据类型(如列表、字典、元组等)和控制流(如循环、条件语句等)。函数和模块:理解函数的定义和使用,以及如何组织代
- 详解AI作画算法原理
Jimaks
后端AIpythonai作画python人工智能
在艺术与科技的交汇处,AI作画正以惊人的创造力刷新着我们对美的认知。这一领域融合了深度学习、计算机视觉和生成模型的前沿技术,让机器能够“想象”并创作出令人惊叹的图像。本文将深入浅出地探讨AI作画的核心算法原理,分析常见问题与易错点,并通过一个简单的代码示例,带领大家一窥AI艺术创作的奥秘。一、核心概念与原理1.生成对抗网络(GANs)GANs是AI作画中最著名的算法之一,由IanGoodfello
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen