UNet入门总结

作者:AI浩 来源:投稿
编辑:学姐

Unet已经是非常老的分割模型了,是2015年《U-Net: Convolutional Networks for Biomedical Image Segmentation》提出的模型。

论文连接:https://arxiv.org/abs/1505.04597

在Unet之前,则是更老的FCN网络,FCN是Fully Convolutional Netowkrs的缩写,确立分割网络的基础框架 ,不过FCN网络的准确度较低,没有Unet好用。

Unet网络非常的简单,前半部分就是特征提取,后半部分是上采样。在一些文献中把这种结构叫做编码器-解码器结构,由于网络的整体结构是一个大些的英文字母U,所以叫做U-net。

网络结构如下图:

UNet入门总结_第1张图片

  • Encoder:左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的maxpooling层组成一个下采样的模块(后面代码可以看出);

  • Decoder:有半部分,由一个上采样的卷积层(去卷积层)+特征拼接concat+两个3x3的卷积层(ReLU)反复构成(代码中可以看出来);这种通过通道数的拼接,可以得到更多的特征,同时也会消耗更多的显存。

UNet的结构设计,使其能够结合底层特征和高层特征的信息。

底层(深层)特征:

经过多次下采样后的低分辨率信息。能够提供分割目标在整个图像中上下文语义信息,可理解为反应目标和它的环境之间关系的特征。这个特征有助于物体的类别判断(所以分类问题通常只需要低分辨率/深层信息,不涉及多尺度融合)

高层(浅层)特征:

经过concatenate操作从encoder直接传递到同高度decoder上的高分辨率信息。能够为分割提供更加精细的特征,如梯度等。

关于size对不上的原因:

从图上可以看到左侧和右侧的尺寸是对不上的,所以如果要对上,就要经历了裁切,所有灰色箭头的解释是copy and crop,不过复现的模型都没有采用这样的思路,都是将左侧和右侧的尺寸设置成一样的,而且每次卷积都加入了padding,这样经过卷积后尺寸不会改变。

不足之处:

  1. 该网络运行效率很慢。对于每个邻域,网络都要运行一次,且对于邻域重叠部分,网络会进行重复运算。

  2. 网络需要在精确的定位和获取上下文信息之间进行权衡。越大的patch需要越多的最大[池化层],其会降低定位的精确度,而小的邻域使得网络获取较少的上下文信息。

UNet 代码(pytorch)

import torch.nn as nn
import torch
from torch import autograd
 
#把常用的2个卷积操作简单封装下
class DoubleConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch), #添加了BN层
            nn.ReLU(inplace=True),
            nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True)
        )
 
    def forward(self, input):
        return self.conv(input)
 
class Unet(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(Unet, self).__init__()
        self.conv1 = DoubleConv(in_ch, 64)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = DoubleConv(64, 128)
        self.pool2 = nn.MaxPool2d(2)
        self.conv3 = DoubleConv(128, 256)
        self.pool3 = nn.MaxPool2d(2)
        self.conv4 = DoubleConv(256, 512)
        self.pool4 = nn.MaxPool2d(2)
        self.conv5 = DoubleConv(512, 1024)
        # 逆卷积,也可以使用上采样(保证k=stride,stride即上采样倍数)
        self.up6 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
        self.conv6 = DoubleConv(1024, 512)
        self.up7 = nn.ConvTranspose2d(512, 256, 2, stride=2)
        self.conv7 = DoubleConv(512, 256)
        self.up8 = nn.ConvTranspose2d(256, 128, 2, stride=2)
        self.conv8 = DoubleConv(256, 128)
        self.up9 = nn.ConvTranspose2d(128, 64, 2, stride=2)
        self.conv9 = DoubleConv(128, 64)
        self.conv10 = nn.Conv2d(64, out_ch, 1)
 
    def forward(self, x):
        c1 = self.conv1(x)
        p1 = self.pool1(c1)
        c2 = self.conv2(p1)
        p2 = self.pool2(c2)
        c3 = self.conv3(p2)
        p3 = self.pool3(c3)
        c4 = self.conv4(p3)
        p4 = self.pool4(c4)
        c5 = self.conv5(p4)
        up_6 = self.up6(c5)
        merge6 = torch.cat([up_6, c4], dim=1)
        c6 = self.conv6(merge6)
        up_7 = self.up7(c6)
        merge7 = torch.cat([up_7, c3], dim=1)
        c7 = self.conv7(merge7)
        up_8 = self.up8(c7)
        merge8 = torch.cat([up_8, c2], dim=1)
        c8 = self.conv8(merge8)
        up_9 = self.up9(c8)
        merge9 = torch.cat([up_9, c1], dim=1)
        c9 = self.conv9(merge9)
        c10 = self.conv10(c9)
        out = nn.Sigmoid()(c10)
        return out

Unet代码(Keras)

def unet(pretrained_weights=None, input_size=(256, 256, 3)):
    inputs = Input(input_size)

    conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(drop5))
    merge6 = concatenate([drop4, up6], axis=3)
    conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)

    up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv6))
    merge7 = concatenate([conv3, up7], axis=3)
    conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)

    up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv7))
    merge8 = concatenate([conv2, up8], axis=3)
    conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)

    up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv8))
    merge9 = concatenate([conv1, up9], axis=3)
    conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)

    model = Model(inputs=inputs, outputs=conv10)
    model.summary()

    if (pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

图像分割论文资料

关注下方《学姐带你玩AI》免费领取

码字不易,欢迎大家点赞评论收藏!

你可能感兴趣的:(深度学习干货,粉丝的投稿,人工智能干货,深度学习,图像分割,计算机视觉)