《PyTorch深度学习实践》刘二大人 第4讲 反向传播

课堂代码

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.tensor([1.0])
w.requires_grad = True

def forward(x):
    return w * x

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print("x:", x, "y:", y, "grad:", w.grad.item())
        w.data -= 0.01 * w.grad.data
        
        w.grad.data.zero_() # after update, remember set the grad to zero
    print("epoch:", epoch, "loss:", l.item())
    
print("when x = 4, y = ", forward(4).item())

课后作业
实现该函数的反向传播过程,并求梯度
《PyTorch深度学习实践》刘二大人 第4讲 反向传播_第1张图片
《PyTorch深度学习实践》刘二大人 第4讲 反向传播_第2张图片

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w1 = torch.tensor([1.0])
w1.requires_grad = True
w2 = torch.tensor([1.0])
w2.requires_grad = True
b = torch.tensor([1.0])
b.requires_grad = True

def forward(x):
    return w1 * x**2 + w2 * x + b

def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print("x:", x, "y:", y, "grad:", w1.grad.item(), w2.grad.item(), b.grad.item())
        w1.data -= 0.01 * w1.grad.data
        w2.data -= 0.01 * w2.grad.data
        b.data -= 0.01 * b.grad.data
        
        w1.grad.data.zero_()
        w2.grad.data.zero_()
        b.grad.data.zero_()
    print("epoch:", epoch, "loss:", l.item())
    
print("when x = 4, y = ", forward(4).item())

注:结果差距较大应该是模型与数据不匹配导致的。

你可能感兴趣的:(PyTorch,深度学习实践,深度学习,pytorch,人工智能)