题目背景
提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算
题目描述
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数。例如,LCM(6, 8) = 24。
回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下:
1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20
看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod20101009的值。
输入输出格式
输入格式:
输入的第一行包含两个正整数,分别表示N和M。
输出格式:
输出一个正整数,表示表格中所有数的和mod20101009的值。
输入输出样例
输入样例#1: 复制
4 5
输出样例#1: 复制
122
说明
30%的数据满足N, M≤ 10^3。
70%的数据满足N, M≤ 10^5。
100%的数据满足N, M≤ 10^7。
Orz gxz
https://www.cnblogs.com/GXZlegend/p/6999816.html
然后分块套分块
时间复杂度$O(n)$
// luogu-judger-enable-o2 #include#include #define LL long long using namespace std; const int MAXN = 1e7 + 10, mod = 20101009; int N, M; int prime[MAXN], tot, mu[MAXN], vis[MAXN]; LL sum[MAXN]; void GetMu(int N) { mu[1] = 1; sum[1] = 1; for(int i = 2; i <= N; i++) { if(!vis[i]) mu[i] = -1, prime[++tot] = i; for(int j = 1; j <= tot && i * prime[j] <= N; j++) { vis[i * prime[j]] = 1; if(!(i % prime[j])) {mu[i * prime[j]] = 0; break;} else mu[i * prime[j]] = -mu[i]; } } for(LL i = 2; i <= N; i++) sum[i] = (1ll * i * i % mod * mu[i] % mod + sum[i - 1] + mod) % mod; } LL S(LL x) { return 1ll * (x + 1) * x / 2 % mod;//interesting } LL Query(int n, int m) { int last = 0;LL ret = 0; for(int d = 1; d <= n; d = last + 1) { last = min(n / (n / d), m / (m / d)); ret = (ret + 1ll * (sum[last] - sum[d - 1] + mod) % mod * S(n / d) % mod * S(m / d) % mod) % mod; } return ret % mod; } int main() { // freopen("nt2011_table.in", "r", stdin); // freopen("nt2011_table.out", "w", stdout); scanf("%d %d", &N, &M); if(N > M) swap(N, M); GetMu(1e7 + 1); int last = 0; LL ans = 0; for(int p = 1; p <= N; p = last + 1) { last = min(N / (N / p), M / (M / p)); ans = (ans + 1ll * (S(last) - S(p - 1) + mod) % mod * (Query(N / p, M / p)) % mod) % mod; } printf("%lld", ans % mod); return 0; } /* 123 321 */