- Android Fresco 框架扩展模块源码深度剖析(四)
&有梦想的咸鱼&
AnddroidFresco原理分析Android开发大全android
一、引言在Android开发领域,图片处理一直是一个重要且具有挑战性的任务。Fresco作为Facebook开源的强大图片加载框架,在图片的加载、缓存和显示等方面已经提供了非常完善的功能。然而,为了满足不同开发者多样化的需求,Fresco设计了丰富的扩展模块,这些扩展模块允许开发者根据自身项目的特点对框架进行定制和扩展。本文将深入剖析Fresco框架的扩展模块,从源码级别进行详细分析,帮助开发者更
- python中的scatter()函数用法
品易HTTP
pythonjavascriptcssjs人工智能
若是现在已经对数据化有了解的话,那就一定要来参与看看本章要学习的函数,在样式以及排版上效果还是很好的,经常被用于测试数据上的大小更改以及设置不同颜色,还有时候,对于线条的宽度的更改也都需要利用到这个函数,以上基本就是本章函数的基本用法了,下面进行详细讲述。制作如图所示图片:需要准备:X、Y轴包括数值以及大小和颜色调用语法:plt.scatter()实现代码:importmatplotlibasmp
- Angular 17开发中的SCSS编译问题解决方案
t0_54coder
编程问题解决手册angular.jsscss前端个人开发
在Angular的开发过程中,我们常常会遇到一些难以预料的编译问题。特别是当我们从Angular16升级到Angular17时,可能会遇到一些新的挑战。今天,我们来探讨一下如何解决在使用ngserve进行开发时,.scss文件的编译错误问题。问题描述当使用ngserve命令进行开发时,如果在编辑.scss文件时出现了编译错误,即使你已经修复了语法错误,AngularCLI也不会自动重新编译。结果是
- 深度学习中的Channel,通道数是什么?
%KT%
深度学习深度学习人工智能
参考文章:直观理解深度学习的卷积操作,超赞!-CSDN博客如何理解卷积神经网络中的通道(channel)_神经网络通道数-CSDN博客深度学习-卷积神经网络—卷积操作详细介绍_深度卷积的作用-CSDN博客正文:在跑深度学习代码的过程中,经常遇到的一个报错是:模型尺寸不匹配的问题。一般pytorch中尺寸/张量的表现方式是:torch.size([16,3,24,24])。这四个参数的含义如下:16
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 大模型工程师学习日记(五):基于LangServe的AI服务架构深度解析
MMMMMMMay Love Code
学习架构语言模型深度学习人工智能git
1.概述LangServe️帮助开发者将LangChain可运行和链部署为RESTAPI。该库集成了FastAPI并使用pydantic进行数据验证。Pydantic是一个在Python中用于数据验证和解析的第三方库,现在是Python中使用广泛的数据验证库。它利用声明式的方式定义数据模型和Python类型提示的强大功能来执行数据验证和序列化,使您的代码更可靠、更可读、更简洁且更易于调试。。它还可
- C/C++高效编译工具ccache
工头阿乐
C/C++c语言c++java
C/C++文章目录C/C++前言一、引入ccache二、ccache基本原理三、安装前言在处理一些规模相对较大的工程时,编译花费的时间可能会很长。有时候我们会经常一遍一遍地编译相同的程序,此时,有了ccache情况就好多了。它将在第一遍编译时多花几秒钟,但接下来就会使编译成倍(5-10倍)的提速。ccache的基本原理是通过将头文件高速缓存到源文件之中而改进了构建性能,因而通过减少每一步编译时添加
- 远程调试Python脚本之ptvsd
工头阿乐
PyTorch深度学习python开发语言
深度学习文章目录深度学习前言前言有时候需要远程调试Python脚本,怎么办呢…以下这段代码用于远程调试Python脚本,特别是通过VisualStudioCode(VSCode)的远程调试功能。它会在指定的服务器IP和端口上等待调试器的连接。#检查是否提供了服务器IP和端口ifargs.server_ipandargs.server_port:#远程调试-参见https://code.visual
- yolo模型coco数据集详解
工头阿乐
深度学习YOLO
深度学习文章目录深度学习前言前言instances_train2017.json和instances_val2017.json文件均分为五大部分,这五部分对应的关键字分别为info、licenses、images、annotations、categories。{"info":info,"licenses":[license1,license2,license3,...],"images":[ima
- 前端大文件上传,分片方式上传
Sunsit
前端开发vue前端javascript开发语言
前端大文件分片上传文件上传超时:原因是前端请求框架限制最大请求时长,后端设置了接口访问的超时时间,或者是nginx(或其它代理/网关)限制了最大请求时长。文件大小超限:原因在于后端对单个请求大小做了限制,一般nginx和server都会做这个限制。上传时间过久(想想10个g的文件上传,这不得花个几个小时的时间)由于各种网络原因上传失败,且失败之后需要从头开始整体思路前端根据代码中设置好的分片大小将
- electron 源码下载与编译构
五一编程
学习交流electronjavascript前端webrtcc语言c++
electron源码下载与编译构建预先安装安装nodejs下载eletron构建工具:安装python构建Electron基本要求环境依赖交叉编译构建故障排查高级提示使用clang之外的其它编译器electron的depot_tools工具下载构建源码。这个工具是用nodejs写的,封装了chromium自身的depot_tools工具。非常方便易用。主要是electron在下载完chromium
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- 【重回基础】理解CPU Cache及缓存一致性MESI
Patrick_Lam
重回基础CPUCacheMESI缓存一致性
文章目录一、前言二、为何需要CPUCache三、L1、L2、L3Cache三级缓存结构四、CacheLine:与内存数据交换的最小单位五、MEIS:缓存一致性5.1底层操作5.2MESI协议参考一、前言原打算重新学习一下volatile的实现原理,其中涉及到指令调度重排和数据可见性保证,这两者的理解离不开对CPUCache的掌握,因此,先重温一下CPUCache,便有了本文。二、为何需要CPUCa
- 自动驾驶中控制模块状态机的作用与设计方法
程序员龙一
自动驾驶自动驾驶状态机control
问题解答:一、车辆状态机在自动驾驶控制模块中的核心作用在自动驾驶系统中,状态机(StateMachine)是控制模块的核心逻辑框架,用于管理车辆在不同运行阶段的行为和状态切换。其核心优势体现在以下几个方面:1.系统行为的模块化与可维护性模块化分层管理:状态机将复杂的车辆行为(如启动、停车、紧急避障、车道保持等)分解为独立的状态模块。每个状态专注于单一功能(例如“车道保持”状态仅处理横向控制),降低
- 从零精通机器学习:线性回归入门
吴师兄大模型
0基础实现机器学习入门到精通机器学习线性回归人工智能python算法回归开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- DeepSeek可以画图嘛?DeepSeek怎么画流程图,分享2025年最新版教程
wd209988
流程图pptpowerpoint信息可视化人工智能
你是否遇到过需要快速绘制专业流程图却无从下手的窘境?传统的流程图绘制方法不仅耗时耗力,对工具和技能的要求也让人望而却步。今天,我们将介绍一款革命性工具:亿图图示PPT插件。它能借助DeepSeek大模型的智能能力,让你在PPT中一键生成精美流程图,不用反复折腾!一、流程图绘制的传统方法目前主流的流程图绘制方式主要有三种,第一种是手动绘制工具:比
- lxml学习笔记
weixin_33843409
python
问题1:有一个XML文件,如何解析问题2:解析后,如果查找、定位某个标签问题3:定位后如何操作标签,比如访问属性、文本内容等fromlxmlimportetree->导入模块,该库常用的XML处理功能都在lxml.etree中requests+lxml解析小from lxml import etree import requests page = 1 url = 'http://www.
- lxml模块的学习
bad kid's cute
lxml模块lxml模块python爬虫
1.lxml的认识在前面学习了xpath的语法,那么在代码中我们如何使用xpath呢,对应的我们需要lxm博文链接:xpath和lxml类库安装方式:pipinstalllxml2.lxml的使用1.导入lxml的etree库(导入没有提示不代表不能用)fromlxmlimportetree2.利用etree.HTML,将字符串转化为Element对象,Element对象具有xpath的方法,返回
- C++高频面试问题
HJ_sky
C++
C++常见面试问题汇总一、指针和引用的区别1.指针有自己的一块空间,而引用只是一个别名;2.使用sizeof看一个指针的大小是4,而引用则是被引用对象的大小;3.指针可以被初始化为NULL,而引用必须被初始化且必须是一个已有对象的引用;4.作为参数传递时,指针需要被解引用才可以对对象进行操作,而直接对引用的修改都会改变引用所指向的对象;5.可以有const指针,但是没有const引用;6.指针在使
- python技巧之下划线
老虎也淘气
Python编程掌握指南pythondjango开发语言
♂️个人主页@老虎也淘气个人主页✍作者简介:Python学习者希望大家多多支持我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注python技巧之下划线1、python的moudles文件中__all__作用2、__slots__用于限定类属性,如:3、下面的小技巧可以获取私有变量:4、下划线种类单个下划线(_)单下划线前缀的名称(例如_shahriar)双下划线前缀的名称(例如__s
- AI学习第二天--监督学习 半监督学习 无监督学习
iisugar
机器学习支持向量机人工智能
目录1.监督学习(SupervisedLearning)比喻:技术细节:形象例子:2.无监督学习(UnsupervisedLearning)比喻:技术细节:形象例子:3.半监督学习(Semi-SupervisedLearning)比喻:技术细节:形象例子:4.三者的对比与选择表格总结:5.实际案例对比案例:电商平台用户分群6.关键逻辑总结1.监督学习(SupervisedLearning)比喻:老
- 【华为OD-E卷 -123 判断一组不等式是否满足约束并输出最大差 100分(python、java、c++、js、c)】
CodeClimb
算法题华为od(A+B+C+D+E卷)收录分享华为odpythonjavajavascriptc++
【华为OD-E卷-判断一组不等式是否满足约束并输出最大差100分(python、java、c++、js、c)】题目给定一组不等式,判断是否成立并输出不等式的最大差(输出浮点数的整数部分)要求:不等式系数为double类型,是一个二维数组不等式的变量为int类型,是一维数组;不等式的目标值为double类型,是一维数组不等式约束为字符串数组,只能是:“>”,“>=”,“<”,“<=”,“=”,例如,
- 【华为OD-E卷 -122 字符统计及重排 100分(python、java、c++、js、c)】
CodeClimb
算法题华为od(A+B+C+D+E卷)收录分享python华为odjavac++javascript
【华为OD-E卷-字符统计及重排100分(python、java、c++、js、c)】题目给出一个仅包含字母的字符串,不包含空格,统计字符串中各个字母(区分大小写)出现的次数,并按照字母出现次数从大到小的顺序。输出各个字母及其出现次数。如果次数相同,按照自然顺序进行排序,且小写字母在大写字母之前输入描述输入一行,为一个仅包含字母的字符串输出描述按照字母出现次数从大到小的顺序输出各个字母和字母次数,
- 【华为OD-E卷-02 最多提取子串数目100分(python、java、c++、js、c)】
CodeClimb
算法题华为od(A+B+C+D+E卷)收录分享华为odpythonjavac++javascript
【华为OD-E卷-最多提取子串数目100分(python、java、c++、js、c)】题目给定[a-z],26个英文字母小写字符串组成的字符串A和B,其中A可能存在重复字母,B不会存在重复字母,现从字符串A中按规则挑选一些字母,可以组成字符串B。挑选规则如下:同一个位置的字母只能挑选一次被挑选字母的相对先后顺序不能被改变求最多可以同时从A中挑选多少组能组成B的字符串。输入描述输入为2行,第1行输
- 聊聊Python都能做些什么
·零落·
Python入门到掌握python开发语言
文章目录一、Python简介二、Python都能做些什么1.Web开发2.数据分析和人工智能3.自动化运维和测试4.网络爬虫5.金融科技三、Python开源库都有哪些1.Web开发2.数据分析和科学计算3.机器学习和深度学习4.网络爬虫5.自动化和测试6.其他常用库四、相关链接一、Python简介Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。它最初由GuidovanRossu
- C++高频(二)
HUZ_小Z
c++课程设计笔记经验分享
C++面试高频(二)1.知道动态链接与静态链接吗?两者有什么区别动态链接和静态链接的区别:动态链接:在程序运行时进行链接,加载共享库文件。节省空间,可多个程序共享库文件。灵活性高,可以动态加载不同版本的库文件。维护方便,只需更新库文件本身。静态链接:在编译时进行链接,将库函数复制到可执行文件中。独立的可执行文件,不依赖外部库文件。可执行文件较大,可能会有冗余代码。维护复杂,更新库函数需重新编译和分
- 【华为OD-E卷 - 高频题目全览 (关注、收藏)通过率100%以上题目可达95%(python、java、c++、js、c)】
CodeClimb
算法题华为od(A+B+C+D+E卷)收录分享纯小白编程入门教程(新手必看)计算机相关操作技巧(新手必看)华为odc++c语言javapythonjsjavascript
注意:如果发现代码有用例覆盖不到的情况,欢迎反馈!会在第一时间修正,更新。解题不易,如对您有帮助,欢迎点赞/收藏E卷题目全览一键跳转详情题目详情跳转01补种未成活胡杨点此跳转详情02最多提取子串数目点此跳转详情03ai面板识别点此跳转详情04流浪地球
- 基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
电力程序小学童
聚类matlabISODATA算法风电光伏
目录1主要内容聚类中心选取步骤核方法2部分代码3程序结果4程序链接1主要内容程序复现文献《基于机器学习的短期电力负荷预测和负荷曲线聚类研究》第三章《基于改进ISODATA算法的负荷场景曲线聚类》模型,该方法不止适用于负荷聚类,同样适用于风光等可再生能源聚类,只需要改变聚类的数据即可,该方法的通用性和可创新性强。该代码实现一种基于改进ISODATA算法的负荷场景曲线聚类方法,代码中,主要做了四种聚类
- 软件设计师之编译原理核心知识深度剖析:从词法到语法分析
一杯年华@编程空间
软考中级软考中级
软件设计师之编译原理核心知识深度剖析:从词法到语法分析在软件开发的知识体系中,编译原理是极为关键的一环,它就像一座桥梁,连接着人类可读的程序代码与计算机能够执行的机器指令。我写这篇博客的目的,是希望和大家一起学习进步,深入剖析编译原理中的词法分析和语法分析等核心知识,让这些复杂的概念变得通俗易懂,助力大家在软件设计领域更上一层楼。一、词法分析相关知识(一)正规表达式与正规集正规表达式是描述词法规则
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s