- 基于Spring Boot和Vue的人脸识别项目(源码)
AI人H哥会Java
JAVA大作业项目实战springbootvue.jsjava人工智能计算机视觉后端sql
背景随着人工智能技术的迅猛发展,生物识别技术的迅猛发展,人脸识别已经成为最具潜力的人工智能应用之一。它不仅在安全监控、金融支付、智能家居等多个领域得到了广泛应用,也逐渐进入日常生活场景。人脸识别作为一种生物特征识别技术,能够通过分析人脸图像中的特征点,实现对个体的身份识别。利用计算机视觉技术,系统能够快速从大量图片中定位并识别特定人脸,实现身份验证和信息检索。这一技术的应用,不仅提高了安全性,还提
- 图像生成大模型:Imagen 详解
转角再相遇
imagenpython深度学习计算机视觉
近年来,图像生成技术取得了显著进展,推动了计算机视觉和生成对抗网络(GAN)等领域的发展。Imagen是一个新兴的图像生成大模型,其在生成高质量、逼真图像方面表现出色。本文将详细讲解Imagen的基本原理、架构、训练流程及应用场景。1.Imagen的基本原理1.1什么是Imagen?Imagen是一种基于深度学习的图像生成模型,结合了自注意力机制(Self-attentionMechanism)和
- 人工智能伦理:技术发展背后的思考
m0_72547478
人工智能
近年来,人工智能技术呈爆发式发展,在医疗、交通、金融等诸多领域取得惊人成果,但与此同时,人工智能伦理问题日益凸显,引发广泛关注。数据隐私与安全首当其冲。AI系统依赖海量数据训练,这些数据包含个人信息、医疗记录等敏感内容。若数据保护不当,极易引发数据泄露风险,侵犯个人隐私。例如,某些智能健康APP,若未能加密传输用户健康数据,一旦遭受黑客攻击,用户的隐私将暴露无遗。算法偏见也是一大痛点。AI算法基于
- Imagen架构详解:理解其背后的技术与创新
范范0825
Imagen架构
Imagen架构详解:理解其背后的技术与创新引言近年来,生成式人工智能技术取得了飞速发展,特别是在图像生成领域。作为这一领域的重要创新之一,Imagen是由谷歌开发的一种基于文本生成图像的模型。它在生成高质量、逼真的图像方面表现出色,并通过其先进的架构和技术手段推动了图像生成的技术进步。Imagen不仅在图像生成质量上具有显著优势,还能够通过自然语言描述生成细致复杂的图像。本文将详细剖析Image
- 【MySQL】Mysql数据库导入导出sql文件、备份数据库、迁移数据库
程序员洲洲
数据库数据库mysql导入导出sqlsql文件备份迁移
本文摘要:本文提出了xxx的实用开发小技巧。作者介绍:我是程序员洲洲,一个热爱写作的非著名程序员。CSDN全栈优质领域创作者、华为云博客社区云享专家、阿里云博客社区专家博主。同时欢迎大家关注其他专栏,我将分享Web前后端开发、人工智能、机器学习、深度学习从0到1系列文章。同时洲洲已经建立了程序员技术交流群,如果您感兴趣,可以私信我加入我的社群,也可以直接vx联系(文末有名片)v:bdizztt随时
- flv格式转换为mp4(ffmpeg)
这个名字还中
Java爬虫java音视频
使用java将flv文件格式视频转换为mp4文件格式,使用的工具为ffmpeg。/***转换视频格式时需要的自定义线程*/publicclassPrintStreamextendsThread{java.io.InputStream__is=null;publicPrintStream(java.io.InputStreamis){__is=is;}publicvoidrun(){try{whil
- zookeeper分布式锁模拟12306买票
有一个好名字
zookeeper分布式zookeeper云原生
未加锁时容易出现重复买票情况代码publicclassTicket12306implementsRunnable{//票数privateintticketNums=10;@Overridepublicvoidrun(){while(true){if(ticketNums>0){System.out.println(Thread.currentThread()+"抢到了第"+ticketNums+"
- 实战千问2大模型第五天——VLLM 运行 Qwen2-VL-7B(多模态)
学术菜鸟小晨
千问多模型qwen2vl
一、简介VLLM是一种高效的深度学习推理库,通过PagedAttention算法有效管理大语言模型的注意力内存,其特点包括24倍的吞吐提升和3.5倍的TGI性能,无需修改模型结构,专门设计用于加速大规模语言模型(LLM)的推理过程。它通过优化显存管理、支持大模型的批处理推理以及减少不必要的内存占用,来提高多GPU环境下的推理速度和效率。VLLM的核心特点包括:显存高效性:VLLM能够动态管理显存,
- python语言souhushipin爬虫程序代码QZQ
EasySoft易软
python爬虫数据库
importrequests#第一步搜索视频名称,找第2个这个ip?k=Xilmz93BsHYDhRYmz913t6O…开头的文件,url=‘https://data.vod.itc.cn/ip?k=Xilmz93BsHYDhRYmz913t6OUXpCGhROCzHaRsAOdjpCGhRYAtUxIgYeiwmemZDyOwmXAyB2HWhdt5BvOWFcvf2PNNef6q2vUo8fV
- qwenvl 代码中的attention pool 注意力池如何理解,attention pool注意力池是什么?
OpenSani
AI大模型计算机视觉语言模型qwenvlLLM
qwenvl中的attentionpool如何理解,其实这就是一个概念的问题看qwenvl的huggingface的代码的时候,发现代码里有一个Resampler以及attn_pool,这和之前理解的连接池线程池表示资源复用的意思不太一样,查了一下:注意这里的pool和线程池连接池里面的pool不一样:深度学习中的池化:池化在深度学习中主要指通过滑动窗口对特征图进行下采样,提取最重要的特征,减少计
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- GAN在图像增强中的应用实战指南
码字仙子
本文还有配套的精品资源,点击获取简介:图像增强技术通过算法改善图像质量,GAN作为一种生成对抗网络,在此领域具有重要应用。通过生成器和判别器的对抗性训练,GAN可以生成逼真图像、修复低质量图像、扩增数据集并进行风格迁移。本项目将介绍如何使用Python及其相关库实现GAN图像增强,包括模型的构建、训练和评估。通过项目案例学习,你可以掌握GAN在图像增强中的实际应用,提高图像处理和深度学习的技能。1
- 利用双分支CycleGAN进行图像数据的高效增强
jizhi-dataset
人工智能
随着人工智能技术的快速发展,图像数据处理变得越来越重要。为了提高图像数据的质量和可用性,我们需要采用高效的数据增强方法。双分支CycleGAN网络作为一种先进的图像处理技术,为我们提供了一种全新的解决方案。本文将详细介绍双分支CycleGAN的工作原理,并展示其在图像数据增强方面的实际效果。同时,我们也将讨论在实际应用过程中可能遇到的挑战以及如何解决这些问题。,,CycleGAN是一种用于图像到图
- OpenCV计算机视觉 08 图像的旋转
伊一大数据&人工智能学习日志
OpenCV计算机视觉人工智能计算机视觉opencv
图像的旋转下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转方法一:使用了NumPy库的np.rot90()函数来实现图像的旋转np.rot90(img,k=-1)表示将输入的图像img顺时针旋转90度,np.rot90(img,k=1)表示将图像逆时针旋转90度。importcv2importnumpyasnp#导入原图img=cv2.imread('小猪佩奇.png')
- 揭秘AIP智能体平台:构建未来AI基础设施的新引擎
大东(AIP内容运营专员)
人工智能
在人工智能的浪潮中,科技正在改变我们生活的方方面面。从智能推荐到自动驾驶,从个性化广告到实时风险控制,AI的触角无处不在。但这些令人瞩目的成果背后,究竟是什么在支撑着AI的飞速发展?答案是——人工智能平台。人工智能平台是连接计算资源、开发工具和行业应用的重要桥梁,支撑着从模型开发到行业场景落地的每一个环节。它不仅为开发者提供高效便捷的工具,还为企业创造了无限的创新可能。本文将带你深入了解人工智能平
- 【Python】已解决:WARNING: pip is configured with locations that require TLS/SSL, however the ssl module i
屿小夏
pythonpipssl
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习模型推理速度/吞吐量计算(附代码)
Scabbards_
1500深度学习笔记深度学习人工智能
参考博文:https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247546551&idx=2&sn=f198b6365e11f0a18832ff1203302632&chksm=ebb70e63dcc0877569d1838b2391744be628bf6cbb6e203a49f855e0769ecbbbf5a9929fe2db&scene
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- ChatGPT详解
Loving_enjoy
实用技巧人工智能自然语言处理
ChatGPT是一款由OpenAI研发和维护的先进的自然语言处理模型(NLP),全名为ChatGenerativePre-trainedTransformer,于2022年11月30日发布。以下是对ChatGPT的详细介绍:###一、技术架构与原理1.**技术架构**:ChatGPT建立在Transformer架构之上,这是一种深度学习模型,特别适用于处理自然语言。其核心是自注意力机制,允许模型在
- 《鸿蒙Next应用商店:人工智能开启智能推荐与运营新时代》
人工智能深度学习
在科技飞速发展的当下,鸿蒙Next系统的出现为操作系统领域带来了新的变革与机遇,而人工智能技术的融入更是让其应用商店的智能化推荐和运营迈向了一个全新的高度。用户画像精准构建在鸿蒙Next系统中,应用商店可以借助系统强大的权限管理和数据收集能力,全方位收集用户的多维度数据。通过对用户在应用商店内的浏览历史、下载记录、搜索关键词,以及在其他鸿蒙应用中的使用行为等多源数据进行汇总和分析,利用人工智能算法
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- Java学习,删除集合指定元素
五味香
java学习开发语言pythonandroidkotlingolang
Java删除集合中指定元素,通常依赖于集合具体类型。不同的集合类型(如ArrayList,HashSet,LinkedList等)提供了不同的方法来执行此操作。使用ArrayList:importjava.util.ArrayList;importjava.util.List;publicclassMain{publicstaticvoidmain(String[]args){Listlist=n
- 迅为RK3562开发板专为3562编写10大分类2900+页文档
mucheni
rk35623562
iTOP-3562开发板采用瑞芯微RK3562处理器,内部集成了四核A53+MaliG52架构,主频2GHZ,内置1TOPSNPU算力,RK809动态调频。支持OpenGLES1.1/2.0/3.2、0penCL2.0、Vulkan1.1内嵌高性能2D加速硬件。内置独立NPU,算力达1TOPS,可用于轻量级人工智能应用。支持几乎全格式的H.264解码,支持1080p@60fps的解码,支持4K@3
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- PYTHON中字符串(str)类型和比特(bytes)类型转换
齐柏林fly 艇
python
bytes主要是用于二进制的数据处理的数据类型,在网络编程中,由于服务器和浏览器只能识别bytes类型数据。所以就需要进行数据类型转换例如socket编程中的.send()和.recv()就需要用到str类型和bytes类型转换一、str转bytes:第一种:在str类型前加b,即b"str"第二种:在str后加.encode("utf-8"),即str.encode("utf-8"),编码方式默
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 透过生活小故事,轻松理解大模型开发的五种核心方法
java
大家好,我是大圣,今天聊一下大模型开发的几种方法。大模型开发常用方法前言人工智能的世界听起来复杂神秘,但其实它与我们的日常生活有着许多相似之处。即使你对大模型开发一无所知,也能通过生活中的简单故事,理解其中的奥秘。本文将以贴近生活的五个场景,通俗易懂地讲解大模型开发中的五种核心方法:提示词工程和外部函数、Agent设计、RAG设计(检索增强生成)、微调以及预训练。让我们一同走进这些故事,揭开大模型
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- 文心一言vsGPT-4全面对比
编程小郭
文心一言chatgptjavapython人工智能ai
文心一言和GPT-4都是当前非常先进的人工智能语言模型,它们各自具有独特的特点和优势。以下是对这两款工具的全面比较:文心一言是由百度开发的一款大型人工智能语言模型,它基于强大的深度学习技术和海量的数据资源,具备出色的语言理解和生成能力。文心一言在中文处理方面尤为出色,能够准确理解中文语境和语义,生成流畅、自然的中文文本。文心一言还具备丰富的知识库和推理能力,能够回答各种问题,提供有用的信息和建议。
- 应用"懒加载"模式,优化@Transactional事务性能
程序员
背景在项目开发中,使用@Transactional注解来管理事务非常方便,且优雅。但是也存在一个问题:长事务问题很多被@Transactional标记的方法,实际上并不需要进行数据库操作,或者说,它们在执行的很长一段时间内都不会真正触发数据库访问。举个例子,我们的业务逻辑可能如下:@ServicepublicclassOrderService{@Transactionalpublicvoidpro
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo